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Introduction

The following lecture notes were prepared during the Master Class: Noncommutative geometry and

quantum groups which was held in Bedlewo (4.09 - 10.09.2016) and Warsaw (10.09 - 17.09.2016)

as an opening school for the Banach Center Simons Semester Noncommutative geometry the next

generation. The first part of this notes (sections 1-7) is based on the lectures given by Stuart

White, while the second one (sections 8-11) covers the material presented by Joachim Zacharias.

Together they provide an exposition of a recent concepts and developments concerning the subject

of classification and structure of simple, separable and nuclear C*-algebras.

The author of this notes wish to thank Stuart White and Joachim Zacharias for a series

of inspiring lectures and clarifying remarks. He also would like to thank Paul F. Baum, Alan

Carey, Piotr M. Hajac and Tomasz Maszczyk for organizing the Simons Semester Noncommutative

geometry the next generation, as well as express his gratitude to Adam Skalski for many fruitful

discussions.

1 Preliminaries on von Neumann factors

In this section we present some basics facts concerning special class of von Neumann algebras.

Recall that a von Neumann algebra M is a strongly (weakly) closed ˚-subalgebra of BpHq which

contains a unit. We say that a von Neumann algebra M is separable acting if M Ă BpHq with H

being a separable Hilbert space.

Definition 1.1. A factor is a von Neumann algebra M with trivial center, i.e. ZpMq “ C1.

The following remarks show the importance of factors as a basic ingredients in the theory of

von Neumann algebras.

Remark 1.2. Separable acting von Neumann algebra is a direct integral of factors.

Remark 1.3. A two-sided (strongly closed) ideal I in M is of the form pM where p P ZpMq.

We say that projections p, q P M in von Neumann algebra are equivalent or Murray-von

Neumann equivalent (p „ q) if there exists v P M such that p “ v˚v and q “ vv˚ and we say

that p is subequivalent to q (p À q) if p „ q0 ď q (i.e. p is equivalent to some subprojection of q).

Projection p is infinite if p „ p0 ň p (i.e. p is equivalent to its nontrivial subprojection) and p is

finite if it is not infinite. Accordingly we say that a von Neumann algebra M is infinite if 1 P M

is infinite and M is finite if 1 PM is finite.

Proposition 1.4. In a factor any two projections are compatible, i.e. p À q or q À p.

sketch of a proof. Consider the largest subprojection p0 ď p such that p0 „ q0 ď q. If p “ p0 or

q “ q0 then the proof is completed. Suppose that it is not the case. Let p1 “ p´p0 and q1 “ q´q0.
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By UpMq we denote a set of unitary elements in M . Observe that the join y “
Ž

uPUpMq up1u
˚ is

central, hence equal to identity (M is a factor). Indeed, for any w P UpMq we have

wyw˚ “ w

¨

˝

ł

uPUpMq

up1u
˚

˛

‚w˚ “
ł

uPUpMq

wup1pwuq
˚ “ y,

therefore y commutes with all unitaries and what follows with each element in M (since any

element in M is a linear combination of unitaries). If so then there exists v P UpMq such that

vp1v
˚q1 ‰ 0. The partial isometry ω in a polar decomposition of vp1v

˚q1 provides projections

p2 ď p1, q2 ď q1 such that p2 „ q2 (since ωω˚ ď vp1v
˚ and ω˚ω ď q1). But by maximality p1 and

q1 have no non-zero subprojections that are equivalent - contradiction.

Proposition 1.5 (Type decomposition; Murray, von Neumann). Let M be a separable acting von

Neumann factor. The possible partial orders in P pMq{ „ (where P pMq is a set of projections in

M) are given by

• t0, 1, . . . , nu - type In and M –Mn,

• t0, 1, . . . ,8u - type I8 and M – Bp`2q,

• r0, 1s - type II1,

• r0,8s - type II8 and M – II1bBp`
2q,

• t0,8u - type III (purely infinite).

Example 1.6. Let Γ be a nontrivial discrete (countable) group. By LΓ we denote the group von

Neumann algebra, i.e. a von Neumann algebra generated by a left-regular representation

λg : δh ÞÑ δgh

or in other words the smallest strongly closed subalgebra of Bp`2pΓqq containing tλg : g P Γu. It

can be shown that LΓ is a factor of type II1 if and only if Γ is ICC (Γ fulfills infinite conjugacy

classes condition). This occur precisely when
ˇ

ˇ

 

hgh´1 : h P Γ
(
ˇ

ˇ “ 8 for all g ‰ e P Γ. Form that

we have the following concrete examples of group von Neumann algebras which are II1 factors

(since the following group are ICC):

• S8 “
Ť

n Sn, the group of permutation fixing all but finitely many integers,

•

$

&

%

M “

¨

˝

a b

0 1

˛

‚: a, b P Q, a ‰ 0

,

.

-

,

• Fn, the free group of n generators.

Example 1.7. Let X be a standard probability space and let Γ acts on X by an action α in a

free, ergodic and probability measure preserving way. Then L8pXq ¸α Γ is a II1 factor.
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Definition 1.8. A trace on a C*-algebra A (on a von Neumann algebra M) is a state τ : AÑ C

(τ : M Ñ C) such that τpabq “ τpbaq for all a, b P A (a, b PM).

Fact 1.9. II1 factor has the unique trace (dimension of a projection, i.e. τ : P pMq Ñ r0, 1s).

Fact 1.10. If M is a II1 factor then p À q if and only if τppq ď τpqq.

Fact 1.11. If M is finite (not necessarily a factor) then p À q if and only if τppq ď τpqq for all

traces (for all τ P T pMqq.

Definition 1.12. Let M be a von Neumann algebra represented on BpHq (M Ď BpHq). M is

injective if there exists some linear map Φ such that }Φ} ď 1 and the following diagram

BpHq M

M

Φ
Ď idM

commutes. Then Φ is unital completely positive map (ucp map).

Remark 1.13. Injectivity is a property of M . It does not depend on the embedding of M into

BpHq.

Proposition 1.14. LΓ is injective if and only if Γ is amenable. Let α be a free, ergodic and

probability measure preserving action of Γ on X, then L8pXq ¸α Γ is injective if and only if Γ is

amenable.

Theorem 1.15 (Connes, 1974). There exists the unique injective II1 factor.

Remark 1.16. The important part of Connes’s proof is to show that ”abstract structure” (injec-

tivity) implies ”internal local approximation” (hyperfiniteness).

Definition 1.17. Separable acting von Neumann algebra M is hyperfinite if there exists a family

of finite dimensional C*-algebras F1 Ď F2 Ď . . . ĎM such that
Ť

n Fn is dense (strongly) in M .

Example 1.18. LS8 “
Ť

n LSn is hyperfinite.

Proposition 1.19 (Murray, von Neumann). There exists the unique hyperfinite II1 factor.

2 Semidiscreteness, nuclearity, and nuclear dimension

The goal of this section is to establish relation between von Neumann algebras (notion of semidis-

creteness) and C*-algebras (notion of nuclearity) in order to provide new tools for problems related

to the classification of C*-algebras. In particular we give the definition of so called nuclear dimen-

sion of a C*-algebra. The importance of the aforementioned notion is justified by the following

theorem.
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Theorem 2.1. The class of unital separable simple C*-algebras of finite nuclear dimension is

classified by the Elliott invariant (”K-theory and traces”) in the presence of the UCT (Universal

Coefficient Theorem).

UCT should be treated here as some sort of technical assumption on the level of KK-theory.

Definition 2.2. A von Neumann algebra M is semidiscrete if there exists a finite dimensional

approximation, i.e. there is a net tpψi, φi, Fiqui consisting of completely positive contractive maps

(cpc maps) φi, ψi and finite dimensional C*-algebras Fi such that the following diagram

M M

Fi

idM

ψi
φi

approximately commutes in the sense that φiψipxq Ñ x in weak* topology for any x PM (point-

wise convergence with respect to the weak* topology topology).

Remark 2.3. First step of Connes’s proof (cf. theorem 1.15) is establishing the fact that injectivity

implies semidiscreteness.

Remark 2.4. When we know that M is hyperfinite, we can arrange for φi to be ˚-homomorphisms.

Definition 2.5. A C*-algebra A is nuclear (has a completely positive approximation) if there is

a net tpψi, φi, Fiqui consisting of completely positive contractive maps (cpc maps) φi, ψi and finite

dimensional C*-algebras Fi such that the following diagram

A A

Fi

idA

ψi
φi

approximately commutes in the sense that }φiψipxq ´ x} Ñ 0 for any x P A (pointwise convergence

with respect to the norm topology).

Proposition 2.6. A C*-algebra A is nuclear if and only if A˚˚ is semidiscrete.

sketch of a proof. ñ Nontrivial, factor through Connes’s result, no direct approach know to this

day.

ð If A˚˚ is semidiscrete then it has a finite dimensional approximation given by the diagram

A A˚˚

Fi

i

ψi
φi
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with φiψipxq Ñ x in weak* topology for any x P A Ď A˚˚. By Kaplansky density theorem we may

replace φi by maps φ1i : Fi Ñ A (this is possible since there is a bijective correspondence between

completely positive contractive maps form Mn to A˚˚ and positive elements in MnpA
˚˚q). As a

result we obtain the following diagram

A A

Fi

idA

ψi
φ1i

with φiψipxq Ñ x in weak-topology for any x P A. By Hahn-Banach theorem point-weak closure

of a convex sets coincides with its point-norm closure. Since convex combinations of factorable

maps are factorable, therefore we get the desired norm convergence.

Definition 2.7. A completely positive map Θ : B Ñ C is called order zero if it preserves

orthogonality i.e. for any x, y P B`, xy “ 0 implies ΘpxqΘpyq “ 0.

Example 2.8. Any ˚-homomorphism is an order zero map.

General form of an order zero map is given by

Θpxq “ h
1
2πpxqh

1
2

where h is positive, π is ˚-homomorphism π : B Ñ MpC˚pΘpBqqq to multiplier algebra and

rh, πpxqs “ 0 for all x P B (cf. theorem 8.1).

Remark 2.9. Any unital order zero map is automatically a ˚-homomorphism.

Remark 2.10. There is a duality between order zero maps from B to C and cones over ˚-

homomorphisms C0p0, 1s bB Ñ C.

In that context there is an analogue of the Kaplansky density theorem.

Proposition 2.11. Let F be a finite dimensional C*-algebra with an order zero map Θ : F ÑM

to von Neumann algebra M . By A denote a strongly dense C*-subalgebra in M . There exists a

net tΘiui of order zero maps such that

F M

A

Θ

Θi

Ď

approximately commutes, i.e. Θipxq Ñ Θpxq in strong*(weak*) topology for any x P F .

By this proposition on can present a modified proof of implication ð from proposition 2.6, if

A˚˚ is hyperfinite. In that case one can replace ˚-homomorphisms by order zero maps in order to

obtain approximately commutative diagram
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A A

Fi

idA

ψi
φ1i .

Proposition 2.12. Let A be a nuclear C*-algebra. Then for any finite subset F ! A and any

ε ą 0 there is a completely positive contractive (cpc) approximation, i.e. there are completely

positive contractive maps ψ and φ such that

A A

F “ F p0q ‘ . . .‘ F pnq

idA

ψ
φ

where each F piq is a finite dimensional C*-algebra, }φψpxq ´ x} ă ε for any x P F and φ|F piq is

order zero map for all i “ 0, 1, . . . , n.

Remark 2.13. Decomposition F “ F p0q ‘ . . .‘ F pnq depends on F and ε.

Definition 2.14. A C*-algebra A has nuclear dimension dimnucpAq ď n if for any finite subset

F ! A and any ε ą 0 there is a completely positive (cp) approximation, i.e. there are completely

positive maps ψ and φ such that

A A

F “ F p0q ‘ . . .‘ F pnq

idA

ψ
φ

where each F piq is a finite dimensional C*-algebra, }φψpxq ´ x} ă ε for any x P F , φ|F piq is

contractive order zero map for all i “ 0, 1, . . . , n and }ψ} ď 1.

Remark 2.15. Decomposition F “ F p0q ‘ . . .‘ F pnq depends on F and ε.

Remark 2.16. If φ in the above definition is contractive then A is quasidiagonal.

Example 2.17. dimnucpCr0, 1sq ď 1

Proof. Fix finite subset F Ă Cr0, 1s and ε ą 0. Find an open cover of r0, 1s such that elements in

F are ε-constant. Without the loss of generality we can consider for example the open cover of

the unit interval consisting of the following sets: H1 “ r0, bq, H2 “ pc, fq, H3 “ pg, 1s, K1 “ pa, dq

and K2 “ pe, hq where 0 ă a ă b ă c ă d ă e ă f ă g ă h ă 1 (we can always refine the given

cover in order to obtain the generic cover such as presented here - two colorable refinement, see

the figure below, when Hi are represented by color blue and Ki are represented by color red).
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0 a b c d e f g h 1

Let us choose a point xi in each Hi and yi in each Ki such that any of those points do not

belongs to the intersection of any open sets in the described cover. Let hi and ki denote a partition

of identity subordinant to the given cover (such that hi is supported on Hi and ki is supported

on Ki), i.e. 1 “
ř

i hi `
ř

i ki.

Define the following diagram

Cr0, 1s Cr0, 1s

C3 ‘ C2

idCr0,1s

ψ
φ

such that ψ : Cr0, 1s Ñ C3 ‘ C2 is given by evaluation maps

ψ “ evpx1, x2, x3q ‘ evpy1, y2q

and φ : C3 ‘ C2 Ñ Cr0, 1s is described by partition of unity

ψpλ1, λ2, λ3, µ1, µ2q “
ÿ

i

λihi `
ÿ

i

µiki.

For f P F and typical t P r0, 1s we have for example

fptq “ fptqh2ptq ` fptqk2ptq

and

φψpfqptq “ fpx2qh2ptq ` fpy2qk2ptq.

Therefore, since f is ε-constant, we have }φψpfq ´ f} ă ε for any f P F . Moreover, φ|C3 and φ|C2

are order zero contractive maps.

Remark 2.18. In fact it is an example of a more general phenomenon (cf. definition 8.5 and

example 8.7).

There is a natural question when dimnucpAq “ 0? Obviously it is true for finite dimensional

C*-algebras. What is more, such a property is preserved by direct limits so in particular AF

algebras has zero nuclear dimension. In fact dimnucpAq “ 0 if and only if A is AF algebra (cf.

section 8).

We will return to the notion of nuclear dimension in section 8. At the end of this part of notes

let us consider the following table which implements nuclear dimension in the general scheme of

defying analogous (corresponding) notions in the C*-algebras setting based on well know notions

form von Neuman algebras theory.
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von Neumann notions direct C*-notions colored C*-notions

hyperfiniteness AF algebras finite nuclear dimension

Rokhlin theorems Rokhlin property Rokhlin dimension

MbR –M Ab UHF – A Ab Z – A

Where R, UHF , Z are hyperfinite II1 factor, universal UHF algebra and Jiang-Su algebra respec-

tively.

3 Intertwining arguments

In this section we look closely at so called intertwining techniques and provide examples of how

such methods from von Neumann algebras theory can be translated into C*-algebras setting.

Intertwining techniques become extremely useful in a classification tasks, since in the presence

of ”internal approximation” (hyperfiniteness, being direct limit, etc.) classification of C*-algebra

comes down to proving uniqueness theorems.

Example 3.1. Let F be finite dimensional C*-algebra and M denotes II1-factor. Then linear

maps

ϕ : F ÑM

are classified by traces, i.e. ϕ1 and ϕ2 are unitarily equivalent if and only if τ ˝ϕ1 “ τ ˝ϕ2 where

τ is the unique trace on M . Given any trace tr on F there exists a map ϕ : F Ñ M such that

tr “ τ ˝ ϕ.

We wish to have an approximate version of this example with respect to the norm defined by

}x}2 “ τpx˚xq
1
2 (this is an appropriate choice as this norm is metrizable with respect to strong*

topology on the unit ball in M).

Fact 3.2. For any finite dimensional C*-algebra F and ε ą 0, there exists δ ą 0 such that any

two completely positive contractive maps φ1, φ2 : F ÑM which are δ-homomorphisms in }¨}2 and

}τ ˝ φ1 ´ τ ˝ φ2}2 ă δ are ε-approximately unitarily equivalent, i.e. there exists v P UpMq such

that }vφ1pxqv
˚ ´ φ2pxq}2 ă ε, when }x} ď 1.

Proposition 3.3. Let M denote II1 factor and B Ď M be its von Neumann subalgebra. Then

there exists the unique trace preserving conditional expectation Φ : M Ñ B.

sketch of a proof. Conditional expectation Φ can be defined by the following commutative diagram

L2pMq L2pBq

M B

projetion

Ď

Φ

Ď
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where M nad B are considered as their completions. Existence of Φ follows from arguments based

on the double commutant theorem.

Remark 3.4. Conditional expectation Φ is not a homomorphism.

Remark 3.5. In particular the last proposition show that injectivity is transferred to subalgebras

(in fact it is not only true for II1 factor, but also for any finite von Neumann algebra).

We now ready to present the proof of proposition 1.19, i.e. we will show the uniqueness of

hyperfinite II1 factor R. the following reasoning is an example of intertwining technique.

sketch of a proof. Suppose that we have two hyperfinite II1 factors M “
Ť

n Fn
SOT

and M “

Ť

nGn
SOT

. Let us start with F1 being subalgebra of M . There is a ˚-homomorphism

θ1 : F1 Ñ N

induced by the trace in M . If so then there exists Gn1 Ď N such that θ1pF1q Ďδ1 Gn1 (θ1pF1q is

almost contained in Gn1 with respect to }¨}2 norm, i.e. every element form the }¨} norm unit ball

of θ1pF1q is approximated by elements from Gn1
in }¨}2 norm). As in a previous case, trace on N

induces ˚-homomorphism

ψ1 : Gn1 ÑM

and there is Fn2
Ď M such that ψ1pGn2

q Ďδ2 Fn2
. Let us observe than when ΦGn1

: N Ñ

Gn1
denotes the conditional expectation, composition ψ1 ˝ ΦGn1

˝ θ1 define an approximate ˚-

homomorphism. Consider inclusion i1 : F1 ÑM . Since i1 and ψ1 ˝ΦGn1
˝ θ1 approximately agree

on traces therefore, by uniqueness theorem, we can adjust ψ1 by some unitaries in such a way that

the following diagram

F1 N

θ1pF1q Gn1

M

i1

θ1

ΦGn1

Ď

Ďδ1

ψ1

ε1-approximately commutes (in fact value of δ1 is dependent of a desired ε1, for a given ε1 ą 0 we

find n1 big enough in order to provide θ1pF1q Ďδ1 Gn1
). By the same reasoning one can define

θ2 : Fn2 Ñ N induced by trace in M and continue this procedure (adjusting on maps on each step

in order to obtain approximately commutative diagrams). Carrying on averaging for summable

tolerances we obtain θpxq “ lim θnpxq (in }¨}2 norm) as a map

θ :
ď

n

Fn Ñ N.
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Taking the unique extension of θ to the whole M be obtain a ˚-homomorphism. Similarly, we

define ψ : N ÑM . Note that θ “ ψ´1 so M and N are isomorphic.

Following the same strategy one can also prove the classification theorem for AF algebras (by

ordered K0). Let us remind the construction of K0 group for a given C*-algebra A. By

PA “ P p
Ť

nMnpAqq {„

we denote the set of equivalence classes of projections in
Ť

nMnpAq, where „ denote Murray-von

Neumann equivalence of projections. We can equipped PA with abelian semigroup structure given

by

rps ` rqs “

»

–

¨

˝

p 0

0 q

˛

‚

fi

fl .

K0pAq is then define as a Grothendieck group constructed form PA. Consider a stably finite case:

MnpAq is finite (where the notion of finiteness coincides with definition for von Neumann algebras,

cf. section 1). K0pAq has a cone with order described by

K0pAq` “ trps : p P PA Ă K0pAqu .

After this introduction we are ready to presents the desired classification theorem.

Theorem 3.6 (Elliott). Two AF algebras A nad B are isomorphic if and only if they agree on

the level of invariant

pK0pAq,K0pAq`, r1Asq – pK0pBq,K0pBq`, r1Bsq ,

i.e. there exists an isomorphism Θ : K0pAq Ñ K0pBq such that

ΘpK0pAq`q “ K0pBq`

and

Θpr1Asq “ r1Bs.

sketch of a proof. Suppose we have an isomorphism Θ : pK0pAq,K0pAq`, r1Asq Ñ pK0pBq,K0pBq`, r1Bsq.

Since K0 is continuous, i.e. for A “
Ť

nAn we have that K0 is a direct limit

pK0pAq,K0pAq`, r1Asq “ lim
Ñ
pK0pAnq,K0pAnq`, r1Ansq ,

we obtain the following diagram by restricting Θ to K-theory invariants of a given finite dimen-

sional subalgebra of A or B
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pK0pA1q,K0pA1q`, r1A1
sq

`

K0pBn1
q,K0pBn1

q`, r1Bn1
s
˘

`

K0pAn2
q,K0pAn2

q`, r1An2
s
˘ `

K0pBn3
q,K0pBn3

q`, r1Bn3
s
˘

. . . . . .

Θ

Θ´1

Θ

Θ´1

Θ

.

The proof is then completed by existence and uniqueness theorem for finite dimensional alge-

bras.

Remark 3.7. If there is an isomorphism φ : AÑ B, then it induces the desired group isomorphism

Θ on the level of K-theory. Conversely, if there is an isomorphism Θ then it can be lifted to

isomorphism φ : AÑ B such that its induced map on the level of K-theory agrees with Θ.

4 Connes’s proof: injectivity implies hyperfiniteness

We will now return to the theorem 1.15. There are three main ingredients of Connes’s proof that

injectivity implies hyperfinitenss. Let M denote separable acting II1 factor.

Ingredient 1 Uniqueness for commuting ˚-homomorphisms, i.e. M has approximately inner flip:

There is a net un of unitary elements such that unpxbyqu
˚
n Ñ ybx in }¨}2 norm for any x, y PM .

Ingredient 2 M is McDuff (has McDuff property), i.e. M –MbR. In fact if M is McDuff then

there exists Θ : M – MbR which is approximately unitarily equivalent to idM b 1R, i.e. there

exists a net vn of unitaries such that vnΘpxqv˚n Ñ xb x in }¨}2 norm.

Ingredient 3 M has external finite dimensional approximation, i.e. M ãÑ Rω, where Rω denote

ultraproduct of R defined by

Rω “ `8pRq
M

tpxnq P `
8pRq : limnÑω }xn}2 “ 0u

where ω P βpNq{N is notrivial ultrafilter.

Remark 4.1. Injectivity of M implies ingredients 1´ 3.

We can now present the sketch of the proof that injectivity implies hyperfiniteness, assuming

(for simplicity) that M ãÑ R (instead of M ãÑ Rω).

sketch of a proof. Take finite subset F ! M and ε ą 0. Let F Ď M be a finite subalgebra such

that F Ďε F (with respect to }¨}2 norm). Because M is McDuff, we can work with MbR instead
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of M . If so then F is of the form tx1 b 1, . . . , xn b 1u. Consider the following maps

M
ψ
ÑMbR

idbφ
ÝÑ MbR

with φ being flip and ψ denoted either x ÞÑ x b 1 or x ÞÑ 1 b x. Because of approximate

unitary equivalence, there exist unitary v P MbR such that }vp1b φpxiqqv
˚ ´ x1 b 1}2 ă ε.

There is a finite set tφpx1q, . . . , φpxnqu and a finite dimensional subalgebra F̃ Ď R such that

tφpx1q, . . . , φpxnqu Ďε F̃ . Finally, we obtain finite dimensional subalgebra vp1bF̃ qv˚ Ď MbR

with xi b 1 Pkε vp1bF̃ qv
˚ for some k P N.

It is worth noting that there is a direct C*-algebraic analogue of that reasoning.

Theorem 4.2 (Effros-Rosenberg, 1978). If A is separable unital C*-algebra such that

1. A has approximately inner flip (in this case with respect to }¨} norm),

2. A – AbQ (Q is a universal UHF algebra),

3. A ãÑ Qω (Qω denotes C*-ultraproduct).

Then A is AF algebra (and hence A – Q by classification).

Remark 4.3. Not all separable, unital C*-algebras fulfill conditions 1 ´ 3 stated in theorem 4.2

(for example CAR algebra).

Theorem 4.4. If C*-algebra A has approximately inner flip then A is simple, nuclear and has

unique trace of rank 1 (if it exists).

sketch of a proof. Suppose that JCA is a proper ideal (closed, two-sided). Then JbA and AbJ

are different ideals in A b A. Since A has approximately inner flip there are unitaries un such

that unpJ b Aqu
˚
n Ñ J b A and hence J b A “ Ab J , because unitaries preserve ideals. We get

a contradiction thus A is simple.

To see that A is nuclear consider the flip A bmax pA b Bq
flip
Ñ A b A b B. We have unitaries

un such that unp1bmax pAbBqqu
˚
n Ñ Ab 1bB which shows that maximal norm and minimal

norm coincides.

The remaining part connected to trace is left as an exercise.

Remark 4.5. Having approximately inner flip implies that flip is trivial on the level of K-theory,

e.g. AF algebra ñ UHF algebra. Therefore, condition 1 in theorem 4.2 excludes broad range of

C*-algebras.

Theorem 4.6 (Matui, Sato). Suppose A is simple, separable, nuclear unital C*-algebra with the

unique trace and such that A – A b Q. Then A has a ”2-colored approximately inner flip”’, i.e

there exists net tpun, vnqun of pairs of unitaries contractions such that

vnpxb yqv
˚
n ` unpxb yqu

˚
n Ñ y b x

13



and u˚nun, v˚nvn approximately commutes, i.e. ru˚nun, AbAs Ñ 0 and rv˚nvn, AbAs Ñ 0.

Corollary 4.7 (Matui, Sato). Let A be simple, separable, unital C*-algebra with the unique trace.

Suppose that A – AbQ and A ãÑ Qω. Then dimnucpAq ď 1.

5 Quasidiagonality

In this section we will briefly discuss quasidiagonality which has already appeared in our previous

considerations. We shall begin with the following definition.

Definition 5.1. We say that nuclear, separable, unital C*-algebra is quasidiagonal if A ãÑ Qω.

This is the case if and only if there exists a sequence of maps φn : AÑMknpCq such that

}φnpxyq ´ φnpxqφnpyq} Ñ 0

and }φnpxq} Ñ }x} for any x, y P A.

Example 5.2. The following C*-algebras are quasidiagonal:

• Abelian C*-algebras,

• AF algebras,

• CpX,Mnq.

Obstruction: A ãÑ Qω, where

Qω “ `8pQq
M

tpxnq P `
8pAq : limnÑω }xn} “ 0u , ω P βpNq{N

implies that A is stably finite.

Open problem (Blackadar, Kirschberg): Do all stably finite nuclear C*-algebras A fulfill

A ãÑ Qω?

Theorem 5.3 (Winter, Zacharias). If A is separable, nuclear an unital C*-algebra with faithful

trace, then there exist contractive order zero maps φ1, φ2 : AÑ Qω such that φ1p1q ` φ2p1q “ 1.

Corollary 5.4 (Sato, White, Winter). Let A be a simple, separable, nuclear, unital C*-algebra

with unique trace such that A – AbQ (or A – Ab Z). Then dimnucpAq ď 3.

Theorem 5.5 (Tikuisis, White, Winter). A separable, unital, nuclear C*-algebra A with faithful

trace and UCT admits embedding A ãÑ Qω.

Remark 5.6. The only role of the presence of UCT in the previous theorem is to provide that the

map

KK

˜

C0p0, 1q bA,
8
ź

n“1

Qω

¸

Ñ

8
ź

n“1

KK pC0p0, 1q bA,Qωq

is injective.

14



6 Tracial approximation

Let us start with the natural question. Whenever there are two linear maps φ, ψ : A Ñ B

between unital C*-algebras, when are they unitarily equivalent or at least approximately unitarily

equivalent? The answer for that question is provided by Connes 2ˆ 2 matrix trick. Define a map

π : AÑ

¨

˝

φpxq 0

0 ψpxq

˛

‚.

We have the following facts

Fact 6.1. φ is unitarily equivalent to ψ if and only if matrices

¨

˝

0 0

0 1

˛

‚,

¨

˝

1 0

0 0

˛

‚

are equivalent (in Murray-von Neumann sense) in M2pBq X πpAq
1

Fact 6.2. φ is approximately unitarily equivalent to ψ if and only if matrices

¨

˝

0 0

0 1

˛

‚,

¨

˝

1 0

0 0

˛

‚

are equivalent (in Murray-von Neumann sense) in the relative commutant of πpAq in the ultra-

product of M2pBq.

It is immediate that any two maps form R (hyperfinite II1 factor) into other II1 factor are

approximately unitarily equivalent (because unitary equivalence occur on finite dimensional alge-

bras). One could say even more. If π : RÑMω then πpRq1 XMω is a factor of type II (trace on

Mω is inherited from trace on M).

Example 6.3. Consider the AF algebra A with K0pAq “ Q2, K0pAq` “ tpq, pq P Q` ˆQu and

r1s “ p0, 1q. Traces of AF algebras comes from states in K-theory, i.e. from maps

pK0pA1q,K0pA1q`, r1A1
sq Ñ pR,R`, 1q.

In a given example there is only one state ρ mapping

ps, tq ÞÑ s.

This state has the property that rxs ď rys implies ρpxq ď ρpyq (but the inverse implication does

not occur).

Definition 6.4. C*-algebra A has strict comparison of projections by traces if τppq ă τpqq for all

τ P T pAq (p, q P P p
Ť

nMnpAqq) implies rps ď rqs.

Proposition 6.5. Let A and B be separable C*-algebras with the unique trace. Let π : AÑ B be

15



a ˚-homomorphism. By π we denote extension of π

π : M Ñ N

where M “ A
SOT

and N “ B
SOT

. Then we have a surjective map (form Kaplansky density

theorem) between ultraproducts

Bω � Nω

which induces a surjective map

πpAq1 XBω � πpMq1 XNω.

This proposition gives us a tool of ”pulling back” elements form von Neumann setting (πpMq1X

Nω) into the C*-algebraic one (πpAq1 XBω).

In the remaining part of this section we shall assume that each C*-algebra is separable, simple,

nuclear and with the unique trace.

Lemma 6.6 (Matui, Sato). Suppose that B has strict comparison of elements by its trace. Then

1. all traces on πpAq1XBω factor through canonical surjection onto πpMq1XNω, i.e. πpAq1XBω

has unique trace.

2. πpAq1 XBω also has strict comparison.

We have already defined strict comparison in the context of projections, the following definition

provides its generalization.

Definition 6.7. A has strict comparison if for any positive elements a, b in matrix algebra
Ť

nMnpAq, limn τpa
1
n q ă limn τpb

1
n q implies that there exists a sequence of unitaries vn such

that vnbv
˚
n Ñ a.

Assume A is unital. What is more let A ãÑ Qω (holds in the presence of UCT) and A – AbQ.

Fix unital completely positive maps ϕn : A Ñ Mkn Ă Mkn b Q – Q inducing ϕ : A b Q ãÑ Qω.

Fix projections pn “ 1 b pn P Mkn b Q such that 1 ´ ε ď τppnq ď 1 ´ ε
2 and define projection

p “ ppnq P Qω X ϕpAbQq
1 (we have 1´ ε ď τppq ď 1´ ε

2 ). Set π : AbQÑM2pAbQqω by

πpxq “

¨

˝

x 0

0 1A b ϕpxq.

˛

‚

By lemma 6.6, πpAbQq1 XM2pAbQqω has strict comparison

τ

¨

˝

¨

˝

0 0

0 p

˛

‚

˛

‚ă τ

¨

˝

¨

˝

1 0

0 0

˛

‚

˛

‚ñ Dv P πpAbQq1 XM2pAbQqω s.t.

v˚v “

¨

˝

0 0

0 p

˛

‚, vv˚ ď

¨

˝

1 0

0 0

˛

‚.

16



Let Fn “Mkn b pn lift v to pvnq (in the ultraproduct) satisfying

v˚nvn “

¨

˝

0 0

0 pn

˛

‚, vv˚ “

¨

˝

qn 0

0 0

˛

‚ď

¨

˝

1 0

0 0

˛

‚.

Note that rqn, AbQs Ñ 0.

Conclusion: A b Q is tracially AF in this setting, i.e. for any finite subset F ! A, ε ą 0 there

exists finite dimensional subalgebra F Ă AbQ such that }r1F , xs} ă ε for any x P F , τp1F q ą 1´ε

and 1Fx1F Pε F for all x P F .

This tracial local structure is good for classification in the presence of UCT. Unfortunately

tensoring with Q ”damage” K-theory information. The proof of presented construction give us

opportunity to change Q with any UHF algebra.

7 Z-stability

In this section we will return to the main idea presented by the table in the end of section 2. Let

us recall that in a von Neumann setting we have

McDuff property MbR –M ô @kMk ãÑMω XM 1punitarilyq.

Similarly in C*-algebraic setting

McDuff property AbQ – Aô @kMk ãÑ Aω XA
1punitarilyq.

Let Z denotes (as previous) the Jiang-Su C*-algebra. We have the following dimensional (”col-

ored”) version of above results.

Proposition 7.1. A – Ab Z if and only if for any k there exist contractive order zero maps

φ1 : Mk Ñ Aω XA
1,

φ2 : Mk`1 Ñ Aω XA
1

such that φ1p1q ` φ2p1q “ 1.

Remark 7.2. In fact this property could be seen as a definition of Jiang-Su C*-algebra.

Remark 7.3. Most of proofs from the previous sections have their colored versions (with AbZ – A

instead of AbQ – A).

The above proposition can be stated in a different way.

Proposition 7.4. A – A b Z if and only if for any k there exists an order zero map φ : Mk Ñ

Aω XA
1 such that 1´ φp1q “ v˚v and φpe11qvv

˚ “ vv˚ for some v P Aω XA
1.

Theorem 7.5 (Matui, Sato). If A is a unital, simple, separable, nuclear C*-algebra with the

unique trace then A – Ab Z.

17



sketch of a proof. We have the following diagram from canonical surjection

Aω XA
1 Rω XR1

Mk

φ

where φ denotes order zero lift and inclusion of Mk in Rω X R1 is by McDuff property. Observe

that τp1´ φp1qq “ 0 and τpφpe11qq “
1
k , so there exists desired v from the previous definition.

Remark 7.6. Let us emphasis that Z was a first counterexample to the conjecture that simple

nuclear and separable C*-algebras are completely classified by K-theory. Indeed, Z is stably finite

and infinite dimensional C*-algebra with K-theory K˚pZq “ K˚pCq.

Finally, let us present more direct approach to the definition of Jiang-Su algebra. Let

Zp8,q8 “ tf P C pr0, 1s,Mp8 bMq8q : fp0q “Mp8 b 1, fp1q “ 1bMq8u .

Remark 7.7. One can think of this as a C*-algebraic analogue of join construction.

Consider a map

α : Zp8,q8 Ñ Zp8,q8

which is trace collapsing, i.e. τ1 ˝ α “ τ2 ˝ α for all traces τ1, τ2 P Zp8,q8 . Then we can define Z

(knowing of its existence form elsewhere) by

Zp8,q8 Zp8,q8 Zp8,q8 . . . Z.α α α α

”Winter technique”: If one can classify AbU for all U P UHF algebras in a fashion compatible

with the definition of Z, then one can classify Ab Z.

8 Nuclear dimension: examples, properties, techniques

In this section we discuss in more detailed way the notion of nuclear dimension which was briefly

presented in section 2. Recall than a completely positive map ϕ : AÑ B between two C*-algebras

is order zero (oz) if a1a2 “ 0 (a1Ka2) implies ϕpa1qϕpa2q “ 0 (ϕpa1qKϕpa2q) for all a1, a2 P A`.

Theorem 8.1. A map ϕ : AÑ B is order zero if and only if we have the factorization given by

the following commutative diagram

A B

MpBϕq

π

ϕ

h

18



where π is a ˚-homomorphism form A to multiplier algebra MpBϕq, h is some positive element of

B such that rh, πpAqs “ 0 and Bϕ “ ϕpAqBϕpAq. We have ϕpaq “ hπpaq “ πpaqh “ h
1
2πpaqh

1
2 .

Remark 8.2. If A is unital then h “ ϕp1q. In general case one should deal with approximate unit.

Before we go further let us evoke two important stability results.

Lemma 8.3. Let A be a C*-algebra with closed two-sided ideal ICA and F be a finite dimensional

C*-algebra. If there exists an order zero map ϕ : F Ñ A{I, then there exists an order zero lift

ϕ̃ : F Ñ A.

Let ϕ : F Ñ A be a completely positive map form finite dimensional C*-algebra F to some

C*-algebra A. We define a modulus of order zero map by

δpϕq “ sup t}ϕpxqϕpyq} : x, y P F`, }x} , }y} ď 1, xKyu .

It is obvious that δpϕq “ 0 if and only if ϕ is order zero.

Lemma 8.4. (Perturbation result) For any ε ą 0 there exists δ ą 0 such that for all ϕ : F Ñ A

completely positive contractions with δpϕq ă δ we can find an order zero map ϕ̃ : F Ñ A such that

}ϕ´ ϕ̃} ă ε.

Recall (definition 2.14) that C*-algebra has nuclear dimension dimnucpAq ď n if and only if for

any finite subset F ! A and any ε ą 0 there is a completely positive approximation

A F “ F p0q ‘ . . .‘ F pnq A
ψ ϕ

such that }ψ} ď 1, ϕ|F piq is order zero contraction for all i “ 0, 1, . . . , n and }φψpxq ´ x} ă ε for

any x P F . The above diagram give us so called n-decomposable approximation.

Basic properties:

1) dimnucpAq “ 0 if and only if A is AF C*-algebra.

2) dimnucplimiÑ8Aiq ď lim infiÑ8 dimnucpAiq.

3) dimnucpMnpAqq “ dimnucpAq “ dimnucpAbKq (Morita invariance).

sketch of a proof. Just tensor decomposable approximation diagram with Mn and then use prop-

erty 2 stated above to prove the last equality.

4) Consider the following exact sequence

0 ÝÑ I ÝÑ A ÝÑ A{I ÝÑ 0.

Then dimnucpIq,dimnucpA{Iq ď dimnucpAq ď dimnucpIq ` dimnucpA{Iq ` 1.
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sketch of a proof. To show dimnucpIq ď dimnucpAq consider the following diagram

I A A I

F “ F p0q ‘ . . .‘ F pnq

idA

ψ

φ

ϕ

with φ : a ÞÑ e
1
2

λae
1
2

λ given by quasicentral approximate unit peλq P I (we say that approximate

unit of an ideal I CA is quasicentral if reλ, as Ñ 0 for all a P A). Observe that φϕ|F piq : F piq Ñ I

is approximately order zero so using lemma 8.4 one can perturbate it into order zero map.

Inequality dimnucpA{Iq ď dimnucpAq comes from the following diagram

A{I A A A{I

F “ F p0q ‘ . . .‘ F pnq

ce idA

ψ

q

ϕ

where q denotes quotient map and ce stands for Choi-Effros cp map.

Finally, in order to show dimnucpAq ď dimnucpIq`dimnucpA{Iq`1 consider the diagram which

consists of decomposable approximation diagrams for I and A{I

0 I A A{I 0

F p0q ‘ . . .‘ F pnq
À

Gp0q ‘ . . .‘Gpmq

0 I A A{I 0

Using once more quasicentral approximated unit trick and taking the direct sum of F p0q‘. . .‘F pnq

and Gp0q ‘ . . .‘Gpmq we get the thesis.

5) Let H Ď A be a hereditary subalgebra of a C*-algebra A (i.e. for any x P H and y P A y ď x

implies y P H - if A is separable then hereditary subalgebra is of the form H “ aAa for some

positive element a). Then dimnucpHq ď dimnucpAq.

6) dimnucpAbBq ď pdimnucpAq ` 1qpdimnucpBq ` 1q ´ 1. Putting dim`nucpAq “ dimnucpAq ` 1 we

can write it in a simpler way dim`nucpAbBq ď pdim`nucpAqqpdim`nucpBqq.

sketch of a proof. Just take tensor product of decomposable approximation diagrams.

7) Technical point: If dimnucpAq ď n and F ! A is a finite subset then there exists n-decomposable

approximation such that ψ is approximately order zero map on F . If }ϕ} “ 1 we can arrange for

ψ to be approximately multiplicative (in that situation A is quasidiagonal).
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We are now ready to provide some concrete examples of nuclear dimensions.

Definition 8.5. Let X be a compact Hausdorff space. X has decomposition dimension dimpXq ď

n if for any (finite) open cover W there exists an open refinement U ą W (i.e. for any U i P U

there exists W i PW such that U i ĂW i and U is a cover) such that U “ U p0qYU p1qY . . .YU pnq,

where each U piq is a union of pairwise disjoint open sets.

Remark 8.6. Decomposition dimension is the same as usual cover dimension (in most reasonable

cases).

Example 8.7. If X is compact (metrizable) Hausdorff space then dimnucpCpXqq “ dimpXq.

sketch of a proof. To show that dimnucpCpXqq ď dimpXq one should generalized discussion given

in example 2.17, i.e. partition of unit subordinated to U “ U p0q Y U p1q Y . . . Y U pnq defines

n-decomposable approximation. In order to prove the second inequality one should start with n-

decomposable approximation for CpXq and observe that existence of order zero maps from matrix

algebra to commutative C*-algebras implies that considered matrix algebras are one dimensional.

Example 8.8 (Roe algebra). Let pX, dq be a discrete metric space of bounded geometry, i.e. for

any r ą 0 number of elements |Brpxq| in ball of radius r and center at x is uniformly bounded

(dr “ sup t|Brpxq| : x P Xu ă 8). In this case we define finite propagation operators by

UCpXq “ trαx,ysx,yPX : DM ą 0, R ą 0 s.t. |αx,y| ďM and αx,y “ 0 if dpx, yq ą Ru .

For example if X “ Z then we consider infinite matrices with entries different than zero only in the

R-width bar across the diagonal. The Roe algebra is defined by UC˚r pXq “ UCpXq Ď Bp`2pXqq.

Because X is discrete, its topological dimension is equal to zero. However, one can define new

dimensional notion suitable for a coarse space. Space X has asymptotic dimension asdimpXq ď n

if and only if for any uniform cover W (diameter dpwq of w P W is uniformly bounded) there

exists a coarsening U (W ą U) such that U “ U p0qYU p1qY . . .YU pnq, where each U piq is a union

of pairwise disjoint sets (even r-disjoint for some r ą 0).

U p1q

U p0q

Z

Ò

W

Ó
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From the above figure it is clear that asdimpZq “ 1. By similar reasoning one can obtain also

asdimpZdq “ d.

In the case of Roe algebra UC˚r pXq we have the following inequality.

Theorem 8.9. Nuclear dimension of Roe algebra satisfies dimnucpUC
˚
r pXqq ď asdimpXq.

Remark 8.10. It is interesting results since Roe algebra is often quite big (i.e. nonseparable).

sketch of a proof. We give argumentation in the case when X “ Z. Since `8pMnq is AF algebra

we have the following diagram

UC˚r pXq UC˚r pXq

`8pMnq
À

`8pMnq

F p0q F p1q

Φ

where Φ : UC˚r pXq Ñ `8pMnq
À

`8pMnq denotes cut down map which sends any element form

UC˚r pXq to sequence of its submatrices (related to given family U p0q and U p1q) placed in the first

and second components of `8pMnq
À

`8pMnq respectively. Form this diagram we can construct

desired approximation, the only problem is the fact that submatrices related to different families

U p0q and U p1q may overlap. To get rid of this, each block matrix in any considered element form

`8pMnq must be rescaled (multiplied form left and right on the level of definition of the cut down

map Φ) by the matrix of the form

D “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

2
n 0

. . .

1

. . .

0 2
n

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

1
2

.

Since D almost commutes with finite propagation operators the proof is completed.

Definition 8.11. C*-algebra A is purely infinite and simple if for all a, b P A`z t0u there exists

x P A such that a “ x˚bx (if A is unital then 1 “ x˚bx).

Example 8.12. By arguments similar to the given in a previous example one can show that for

Cuntz algebras we have dimnucpOnq “ 1 and dimnucpO8q ď 2. It quite unexpected result as Cuntz

algebras are purely infinite. In fact all infinite graph C*-algebra have finite nuclear dimension.

Theorem 8.13 (Winter, Zacharias). If A is purely infinite, simple, separable and nuclear C*-

algebra (Kirchberg algebra) satisfying UCT (Universal Coefficients Theorem), then dimnucpAq ď 5.
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In fact above resultrs has been improved.

Remark 8.14. dimnucpAq “ 1 for all Kirchberg algebras with the presence of UCT (Sims).

Remark 8.15. dimnucpAq ď 3 for all Kirchberg algebras without the presence of UCT (Matui,

Sato).

Remark 8.16. dimnucpAq “ 1 for all Kirchberg algebras without the presence of UCT (Bosa,

Brown, Sato, Tikuisis, White, Winter).

9 Cuntz semigroups and nuclear dimension

Let us consider C*-algebra A and define the direct limitM8pAq “
Ť

nMnpAq where the embedding

of MnpAq in Mn`1pAq is given by

MnpAq ãÑ

¨

˝

MnpAq 0

0 0

˛

‚.

For a, b P M8pAq` we define relation a ĺ b (we say that a is Cuntz below b) if there exists

a sequence pxnq Ď M8pAq such that x˚nbxn Ñ a in norm. We say that a and b are Cuntz

equivalent a „ b if and only if a ĺ b and b ĺ a. Cuntz semigroup W pAq is then define by

W pAq “M8pAq`{ „. Cuntz semigroup is ordered semigroup with addition given by

ras ` rbs “

»

–

¨

˝

a 0

0 b

˛

‚

fi

fl .

The importance of Cuntz semigroup W pAq lies in the fact that it contains information of K-

theory and traces of the starting algebra A. For example K˚0 pAq - the Grothendieck group obtain

form W pAq corresponds to traces on A (in a unital case) with the exception of the case when A is

purely infinite (in that situation all positive elements are Cuntz equivalent and W pAq “ t0,8u).

In general it is extremely hard to determine W pAq (no good homological methods suitable for this

problem).

One can think of ras P W pAq in correspondence with open support projections (by open

support we mean interior of support). For a P M8pAq` we have a „ an „ a
1
n . In the case of

positive function a P C0pRq, a
1
n converges (pointwise) to some open support projection χsupppaq.

In general case one can also make the above statement meaningful (this statement can be make

precise on the level of enveloping von Neuman algebra of AbK).

Let us observe that from trace on A we get trace on M8pAq (W pAq)

dτ paq “ τprasq “ lim
nÑ8

τ
´

a
1
n

¯

.

Let us remind the definition 6.7 formulated in the present context.

Definition 9.1. C*-algebra A has strict comparison if for all a, b PM8pAq`z t0u the following is
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true: if τpaq ă τpbq for all traces τ P T pAq then a ĺ b.

Example 9.2. The following examples give a glimpse of the previous definition.

1. Strict comparison is fulfilled in von Neumann algebras setting.

2. Let A “Mn with the unique trace τ “ 1
nTr and pa denotes the projection onto the range of

a P A`. For any a, b P A`, τpaq ă τpbq implies rk a ă rk b and from that there exists x P A

such that a “ x˚bx, so we have strict comparison.

3. If simple and infinite (without trace) C*-algebra A has strict comparison then A is purely

infinite (a, b PM8pAq` ñ a ĺ b, b ĺ a, a „ b).

4. There exists an infinite, simple and nuclear C*-algebra without strict comparison (Rørdam,

2001).

5. There exists a finite, simple and nuclear C*-algebra without strict comparison (Toms, 2008).

To sum up, we have two notion of comparison (for positive elements):

• a ăτ bô τppaq ă τppbq for all τ P T pAq,

• a ĺ bô Dpxnq Ď A : x˚nbxn Ñ a.

We have strict comparison if ras ăτ rbs implies ras ĺ rbs (a ăτ b implies a ĺ b).

Theorem 9.3. (Winter, Rørdam) A simple and separable C*-algebra A with dimnucpAq ă 8 has

strict comparison.

The proof of the previous theorem is very complicated (dimnucpAq ă 8 implies Z-stability

which leads to strict comparison), but one can relatively easy prove the weaker version of this

results given in the next proposition.

Proposition 9.4. Suppose dimnucpAq “ n ă 8. Then A has n-comparison, i.e. for any

a, b0, b1, . . . , bn P M8pAq`, condition ras ăτ rb0s, ras ăτ rb1s, . . . , ras ăτ rbns implies ras ĺ

rb0s ` rb1s ` . . .` rbns. In particular ras ăτ rbs implies ras ĺ pn` 1qrbs.

Firstly, note that if ϕ : A Ñ B is order zero map then a1 ĺ a2 implies ϕpa1q ĺ ϕpa2q. If

τ P T pBq then τ ˝ ϕ P T pAq.

sketch of a proof. There is a sequence pxnq such that xna2x
˚
n Ñ a1. If so, then ϕpxna2x

˚
nq Ñ

ϕpa1q. By theorem 8.1 we have

ϕpx˚na2xnq “ hπpx˚na2xnq “ hπpx˚nqπpa2qπpxnq “
´

πpxnqh
1
n

¯˚

h1´ 2
nπpa2q

´

πpxnqh
1
n

¯

and we are done because h1´ 2
nπpa2q Ñ ϕpa2q. Similarly τ ˝ ϕ P T pAq (by factorization of order

zero map, cf. theorem 8.1).
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We are now ready to present the proof of proposition 9.4

sketch of a proof. Let a ăτ b0, b1, . . . , bn P A`pM8pAq`q. Find n-decomposable approximation

given by the following diagram

F p0q

A
À

A

...

F pnq

ϕ0ψ0

ψi

ψn

ϕi

ϕn

We can chose ψi for i “ 0, 1, . . . , n to be sufficiently (approximately) order zero maps (ϕi are

order zero maps from definition on n-decomposable approximation). We can then show that

ψipaq ăτ ψipbjq for j “ 0, 1, . . . , n in F piq. Since we have a strict comparison in the case of finite

dimensional C*-algebras it gives us ψipaq ĺ ψipbjq. This implies ϕiψipaq ĺ ϕiψipbjq ĺ bj . Finally,

we obtain a «
ř

i ϕiψipaq ĺ ‘ϕiψipaq ĺ ‘ϕiψipbjq ĺ ‘bj which ends the proof.

Toms Winter Conjecture (2008): Let A be a separable, simple and nuclear C*-algebra. The

following conditions are equivalent

1. dimnucpAq ă 8.

2. A is Z-stable (Ab Z – A).

3. A has strict comparison.

Condition 1 could be seen as a kind of topological condition, while condition 2 is related to the

analysis of the property described by Kirchberg (A nuclear, simple and Ab O8 – Aô A if and

only if A is Kirchberg algebra - is purely infinite and classified by KK-theory). It is known that

1 ñ 2 ñ 3 in full generality. However, it is not known if 3 ñ 1 (but it is true under restriction

on the trace space).

10 Dynamical systems and Rokhlin dimension

In this section we consider dynamical systems and C*-algebras which can be associated with then

in a natural way. We also introduce the notion of Rokhlin dimension and relate it to the nuclear

dimension of discussed C*-algebras.
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Let G be a discrete group and A denotes some C*-algebra. Action α of G on A is a map

α : G Ñ AutpAq (we write G
α
ñ A). The pair pG,αq is so called C*-dynamical system. Observe

that if A “ C0pXq then G
α
ñ A defines an action α of G on X.

Starting from C*-dynamical system we can construct universal crossed product A¸α G. One

can think of this as a C*-algebra generated by element a P A and unitaries ug where g P G and

ugau
˚
g “ αgpaq, i.e.

A¸α G “ C˚pa, ug : ugau
˚
g “ αgpaq, a P A, g P Gq.

Starting form concrete faithful representation A ãÑ BpHq we can consider also the reduced cross

product A ¸α,r G Ď Bp`2pGq b Hq (it appears that A ¸α,r G does not depend on the choice of

this faithful representation of A). A ¸α,r G is generated by elements λg P Bp`
2pGq b Hq and

πpaq P Bp`2pGq bHq such that

πpaqpeg b ξq “ eg b αg´1paqξ,

λhpeg b ξq “ ehg b ξ,

where g P G and a P A. In the case of G finite it is convenient to use matrix units eg,h. In that

case

πpaq “
ÿ

gPG

eg,g b αg´1paq,

πpaqλh “
ÿ

gPG

eg,h´1g b αg´1paq.

Therefore, we have a natural way to consider A¸α,r G as a subalgebra of M|G|pAq.

Fact 10.1. If G i amenable then A¸α G – A¸α,r G (in this case we will omit subscript r).

We want to consider a natural question: when dimnucpA ¸α Gq ă 8? We wish to find an

estimate which involves nuclear dimension of A, dimension of G and action α (in a certain sense).

Definition 10.2 (Oceneau, Herman). Let G be a finite group and G
α
ñ A with A being a unital

C*-algebra. A has a Rokhlin property if the following is true: for any finite subset F ! A and

any ε ą 0 there exists a sequence of projection ppgqgPG Ď A such that

1.
ř

gPG pg “ 1,

2. }αgpphq ´ pgh} ă ε,

3. }rpg, as} ă ε for all g P G and a P F .

One can generalized this notion to the special case G “ Z.

Definition 10.3 (Oceneau, Herman). Let Z α
ñ A with A being unital C*-algebra. A has a

(cyclic) Rokhlin property if the following is true: for any finite subset F ! A, any ε ą 0 an any

n P N there exist projections p0, p1, . . . , pn´1 P A such that

26



1. p0 ` p1 ` . . .` pn´1 “ 1,

2. }α1ppiq ´ pi`1} ă ε (with i mod n),

3. }rpi, as} ă ε for all i “ 0, 1, . . . , n´ 1 and a P F .

Let us present the classical motivation which is behind that definitions.

Theorem 10.4 (Rokhlin lemma). Let T : X Ñ X be an aperiodic (such that periodic points have

measure zero) measure transformation of Lebesgue measure space pX,µq. Then for any ε ą 0 and

any n P N there exists measurable subset E Ď X such that

1. E, TE, T 2E, . . . Tn´1E are pairwise disjoint sets,

2. µpE Y TE Y T 2E Y . . .Y Tn´1Eq ą 1´ ε.

Condition 2 from the previous theorem can be stated as a demanding that characteristic

functions χE , χTE , χT 2E , . . . , χTn´1E give approximate partition of unit.

Proposition 10.5. Let G be finite group and G
α
ñ A has Rokhlin property. Then dimnucpA ¸α

Gq ď dimnucpAq.

sketch of a proof. Let dimnucpAq “ d and let us fixed F , ε and projections ppgqgPG Ď A. F ˆG is

a finite subset in A¸α G. We have the following diagram

A¸α G A¸α G

M|G|pAq M|G|pAq

F p0q ‘ . . .‘ F pdq

Ď

ψ

ρ

ϕ

where ρ is given by

ρpeg,h b aq “ pgugau
˚
hph

with eg,h denoting basis in M|G|pAq. Observe that ρpaugq « aug for any a P F (exercise) and ρ is

approximately homomorphism (considered as a map to M|G|pFq), so ρϕi are approximately order

zero maps and can be perturbed into order zero maps.

Proposition 10.6. Let Z α
ñ A has Rokhlin property. Then dim`nucpA¸α Zq ď 2 dim`nucpAq.

sketch of a proof. Let us fix F , ε, n and set of projections p0, . . . , pn´1. Recall that A ¸α Z Ď

Bp`2pZq bHq. Define projections Pn and P 1n as projections on subspaces Hn and H 1n given by

xe0, . . . , en´1y bH

and respectively
A

etpn2 qu
, . . . , etp 3n2 qu

E

bH.
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where ei denote basis vectors in `2pZq. We have the following diagram

A¸α Z A¸α Z

MnpAq ‘MnpAq

F p0q ‘ . . . F pdq F p0q ‘ . . . F pdq

Ψ
ρ1
ρ0

where ρ0, ρ1 : MnpAq Ñ A¸α Z are given by

ρ0peij b aq “ piu
iau´jpj ,

ρ1peij b aq “ piu
iau´jpj

and Ψ is cut down map defined by projections Pn, P
1
n rescaled by matrix D defined in the proof

of theorem 8.9, i.e. Ψ “ DpPn ˆ PnqD ‘DpP
1
n ˆ P

1
nqD.

Since ρ0, ρ1 are approximately multiplicative after small perturbation all ρ0ϕi and ρ1ϕi are

desired order zero maps.

Definition 10.7. (Rokhlin dimension) Let be finite group and G
α
ñ A (with A being unital).

Then dimRokpαq ď d if and only if for any finite subset F Ď A and any ε ą 0 there exists a family

of elements f
plq
g P A`, g P G, l “ 0, . . . , d such that

1.
›

›

›

ř

g,l f
plq
g ´ 1

›

›

›
ă ε,

2.
›

›

›
αgpf

plq
h q ´ f

plq
g h

›

›

›
ă ε for any given l,

3.
›

›

›
ra, f

plq
g s

›

›

›
ă ε for any given l and a P F ,

4.
›

›

›
f
plq
g f

plq
h

›

›

›
ă ε for any given l and g ‰ h.

Remark 10.8. If dimRokpαq “ 0, then we have Rokhlin property (f
p0q
g can be slightly perturbed

in order to give desired set of projections).

Definition 10.9. (Rokhlin dimension) Let Z α
ñ A (with A being unital). Then dimRokpαq ď d

if and only if for any finite subset F Ď A, ε ą 0 and any n P N there exists a family of elements

f
plq
i P A`, i “ 0, . . . n´ 1, l “ 0, . . . , d such that

1.
›

›

›

ř

i,l f
plq
i ´ 1

›

›

›
ă ε,

2.
›

›

›
α1pf

plq
i q ´ f

plq
i`1

›

›

›
ă ε for any given l (i mod n),

3.
›

›

›
ra, f

plq
i s

›

›

›
ă ε for any given l and a P F ,

4.
›

›

›
f
plq
i f

plq
j

›

›

›
ă ε for any given l and i ‰ j.

Proposition 10.10. Let G be finite group and G
α
ñ A with dimRokpαq ď d. Then dim`nucpA ¸α

Gq ď dim`nucpAqpd` 1q.
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sketch of a proof. Similarly to the proof of theorem 10.5 we have the following diagram

A¸α G A¸α G

M|G|pAq
Àd

0 M|G|pAq

F p0q ‘ . . .‘ F pdq

Ď

ψ

ρ0,...,ρd

ϕ

with ρl : M|G|pAq Ñ A¸α G given by

ρlpeg,h b aq “ pf
plq
g q

1
2ugau

˚
hpf

plq
g q

1
2 . (10.1)

Proposition 10.11. Let Z α
ñ A with dimRokpαq ď d. Then dim`nucpA¸αZq ď 2 dim`nucpAqpd`1q.

sketch of a proof. Similar to the proof of proposition 10.6.

Question: How prevalent is Rokhlin dimension?

Theorem 10.12 (Szabo for Zn action, Winter, Krichberg, Zacharias). If X is compact metric

space with free action Z α
ñ CpXq then dimRokpαq ď 2dimpXq`1 (where dimpXq denotes topological

dimension).

sketch of a proof. Proof is based on the following lemma (Gutman, 2012) - topological version of

Rokhlin lemma: Suppose X is compact metric space with free action Z α
ñ CpXq. Let dimpXq “

d ă 8 and n P N, then there exists U Ď X open set such that

1. U,αpUq, . . . αn´1pUq are pairwise disjoint sets,

2. X “
Ť2pd`1q´1
j“0 αjpUq.

11 Rokhlin dimension for residually finite groups

We have already seen the importance of the concept of Rokhlin dimension. In this section we

extend this notion beyond the case of Z and finite groups. Let us start with the following definition.

Definition 11.1. Let G be a discrete group. We say that G is residually finite if for any x P Gz teu

there exist finite group F and homomorphism ϕ : G Ñ F such that ϕpxq ‰ e (in other words

G ãÑ
ś

G{N is injective, where G{N denotes finite quotient).

Example 11.2. The following groups are residually finite:

• Z, Zd,
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• Heisenberg group
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,

• SLnpZq,

• free groups,

• all group of polynomial growth.

Let G be a countable and residually finite group. Then we can find a sequence pGnq of

normal finite subgroups such that G ãÑ
ś

G{Gn is injective (pGnq is known as residually finite

approximation of G).

Definition 11.3. Let G and pGnq be as before with G
α
ñ A and A being unital. Then Rokpαq ď d

if and only if for any ε ą 0, any finite subset F ! A and any n P N there exists a sequence

pf
plq
g q Ď A`, l “ 0, 1, . . . , d, g P G{Gn such that

1.
›

›

›

ř

g,l f
plq
g ´ 1

›

›

›
ă ε,

2.
›

›

›
αgpf

plq

h
q ´ f

plq

gh

›

›

›
ă ε for any given l,

3.
›

›

›
ra, f

plq
g s

›

›

›
ă ε for any given l and a P F ,

4.
›

›

›
f
plq
g f

plq

h

›

›

›
ă ε for any given l and g ‰ h.

Remark 11.4. When G “ Z and Gn “ nZ we get definition 10.9.

One can reformulate the previous definition in a more elegant way. Let A be unital and

separable. Recall that

A8 “ `8pAq{c0pAq

and

A ãÑ A8

We can consider the central sequence algebra F pAq “ A8 X A1. If G
α
ñ A then we can obtain

G
α8
ñ A8 and G

α8
ñ F pAq. Given G and pGnq as before, one can obtain G

σn
ñ CpG{Gnq given by

σnphq : eg ÞÑ ehg.

Proposition 11.5. Let G and pGnq be as before. G
α
ñ A satisfies Rokpαq ď d if and only if for

any n P N there exist G-equivariant order zero maps ϕ0, . . . ϕd

ϕl : pCpG{Gnq, σnq Ñ pF pAq, α8q

such that ϕ0p1q ` . . .` ϕdp1q “ 1.

sketch of a proof. Define ϕlpegq “ rpf
plq
g pεn,Fnqqs P `8pAq{c0pAq with εn Ñ 0 and Fn Ñ A.
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Remark 11.6. This formalism can be generalized to the setting of topological groups, e.g. G “ R

and Gn is replaced by Zx, x ą 0. Then G{Gn “ R{Zx – T. One can develop theory of Rokhlin

dimension for compact groups (Gardella).

Definition 11.7 (Roe). Let G be a residually finite group with residually finite approximation

pGnq. Assume that G is finitely generated with word length metric l. The box space

l G “ lpGnq G “
ž

n

G{Gn

is defined as a discrete metric space where G{Gn carries the word length metric l in the quotient

and G{Gn, G{Gm are ”far apart” for n ‰ m.

Theorem 11.8 (Roe). G is amenable if and only if l G has property A. G is exact if and only

if G as a space has property A. Moreover, asdimpXq ă 8 implies that X has property A (inverse

implication is not true in full generality).

Remark 11.9. Here property A is some sort of 2-variable amenability of coarse metric space.

Question: When do we have asdimpl Gq ă 8? In other words, does asdimpl Gq ă 8 imply

that G is amenable?

Partial answer: asdimpl Gq ă 8 if G is finitely generated, nilpotent/polynomial growth (Szabo,

Wu, Zacharias).

Theorem 11.10 (Szabo, Wu, Zacharias). Let G be residually finite and A be a unital C*-algebra.

1. If G
α
ñ A then dim`nucpA¸α Gq ď pdim`nucpAqqpdim`Rokpαqqpasdim`pl Gqq.

2. If X is compact metric space and G
α
ñ CpXq is free and G is nilpotent with finite Hirsch

length l “ lHirschpGq ă 8, then dim`Rokpαq ď 3lpdim`pXqq so dim`nucpCpXq ¸α Gq ď

3lpdim`pXqq2pasdim`pl Gqq.
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