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Introduction

The following lecture notes were prepared during the Master Class: Noncommutative geometry and
quantum groups which was held in Bedlewo (4.09 - 10.09.2016) and Warsaw (10.09 - 17.09.2016)
as an opening school for the Banach Center Simons Semester Noncommutative geometry the next
generation. The first part of this notes (sections 1-7) is based on the lectures given by Stuart
White, while the second one (sections 8-11) covers the material presented by Joachim Zacharias.
Together they provide an exposition of a recent concepts and developments concerning the subject
of classification and structure of simple, separable and nuclear C*-algebras.

The author of this notes wish to thank Stuart White and Joachim Zacharias for a series
of inspiring lectures and clarifying remarks. He also would like to thank Paul F. Baum, Alan
Carey, Piotr M. Hajac and Tomasz Maszczyk for organizing the Simons Semester Noncommutative
geometry the next generation, as well as express his gratitude to Adam Skalski for many fruitful

discussions.

1 Preliminaries on von Neumann factors

In this section we present some basics facts concerning special class of von Neumann algebras.
Recall that a von Neumann algebra M is a strongly (weakly) closed *-subalgebra of B(H) which
contains a unit. We say that a von Neumann algebra M is separable acting if M < B(H) with H
being a separable Hilbert space.

Definition 1.1. A factor is a von Neumann algebra M with trivial center, i.e. Z(M) = C1.

The following remarks show the importance of factors as a basic ingredients in the theory of

von Neumann algebras.
Remark 1.2. Separable acting von Neumann algebra is a direct integral of factors.
Remark 1.3. A two-sided (strongly closed) ideal I in M is of the form pM where p € Z(M).

We say that projections p,q € M in von Neumann algebra are equivalent or Murray-von
Neumann equivalent (p ~ ¢) if there exists v € M such that p = v*v and ¢ = vv* and we say
that p is subequivalent to ¢ (p < ¢) if p ~ qo < ¢ (i.e. p is equivalent to some subprojection of ¢).
Projection p is infinite if p ~ py < p (i.e. p is equivalent to its nontrivial subprojection) and p is
finite if it is not infinite. Accordingly we say that a von Neumann algebra M is infinite if 1 € M

is infinite and M is finite if 1 € M is finite.
Proposition 1.4. In a factor any two projections are compatible, i.e. p < q or q < p.

sketch of a proof. Consider the largest subprojection pg < p such that pyg ~ qo < ¢q. If p = pg or
q = qo then the proof is completed. Suppose that it is not the case. Let p; = p—pg and ¢1 = ¢—qo-



By U(M) we denote a set of unitary elements in M. Observe that the join y = \/ueU(M) upiu® is
central, hence equal to identity (M is a factor). Indeed, for any w € U(M) we have

wyw® = w \/ upru® |w* = \/ wupy (wu)* =y,
uelU (M) uelU(M)

therefore y commutes with all unitaries and what follows with each element in M (since any
element in M is a linear combination of unitaries). If so then there exists v € U(M) such that
vp1v*qr # 0. The partial isometry w in a polar decomposition of vpiv*q; provides projections
p2 < p1, g2 < g1 such that ps ~ g2 (since ww* < vpv* and w*w < ¢p). But by maximality p; and

g1 have no non-zero subprojections that are equivalent - contradiction. O]

Proposition 1.5 (Type decomposition; Murray, von Neumann). Let M be a separable acting von
Neumann factor. The possible partial orders in P(M)/ ~ (where P(M) is a set of projections in
M) are given by

e {0,1,...,n} - type I, and M =~ M,

{0,1,...,00} - type 1, and M =~ B((?),

[0,1] - type 114,

[0, 0] - type Iy and M =~ IL,@B(¢?),

{0,00} - type 111 (purely infinite).

Example 1.6. Let I be a nontrivial discrete (countable) group. By LT we denote the group von

Neumann algebra, i.e. a von Neumann algebra generated by a left-regular representation
)\g : 6h = (Sgh

or in other words the smallest strongly closed subalgebra of B(¢*(I')) containing {\, : g € I'}. It
can be shown that LT is a factor of type Iy if and only if T is ICC (T fulfills infinite conjugacy
classes condition). This occur precisely when ’{hghil the F}’ = oo for all g # e e I'. Form that
we have the following concrete examples of group von Neumann algebras which are II; factors

(since the following group are ICC):

e Su =, Sn, the group of permutation fixing all but finitely many integers,

a b
e { M= ca,beQ,a#0
0 1

e I, the free group of n generators.

Example 1.7. Let X be a standard probability space and let I' acts on X by an action « in a

free, ergodic and probability measure preserving way. Then L*(X) %, I' is a IT; factor.



Definition 1.8. A trace on a C*-algebra A (on a von Neumann algebra M) is a state 7: A — C

(1 : M — C) such that 7(ab) = 7(ba) for all a,be A (a,be M).
Fact 1.9. II; factor has the unique trace (dimension of a projection, i.e. T: P(M) — [0,1]).
Fact 1.10. If M is a 11y factor then p < q if and only if 7(p) < 7(q).

Fact 1.11. If M is finite (not necessarily a factor) then p < q if and only if 7(p) < 7(q) for all
traces (for all T € T(M)).

Definition 1.12. Let M be a von Neumann algebra represented on B(H) (M < B(H)). M is

injective if there exists some linear map ® such that |[®| < 1 and the following diagram

B(H) —2—— M
ul id s
M

commutes. Then @ is unital completely positive map (ucp map).

Remark 1.13. Injectivity is a property of M. It does not depend on the embedding of M into
B(H).

Proposition 1.14. LT is injective if and only if ' is amenable. Let o be a free, ergodic and
probability measure preserving action of T' on X, then L®(X) x4 T is injective if and only if T is

amenable.
Theorem 1.15 (Connes, 1974). There exists the unique injective 11y factor.

Remark 1.16. The important part of Connes’s proof is to show that "abstract structure” (injec-

tivity) implies ”internal local approximation” (hyperfiniteness).

Definition 1.17. Separable acting von Neumann algebra M is hyperfinite if there exists a family

of finite dimensional C*-algebras Fy < F» < ... < M such that | J,, F}, is dense (strongly) in M.
Example 1.18. LS, =, LS, is hyperfinite.

Proposition 1.19 (Murray, von Neumann). There exists the unique hyperfinite 11y factor.

2 Semidiscreteness, nuclearity, and nuclear dimension

The goal of this section is to establish relation between von Neumann algebras (notion of semidis-
creteness) and C*-algebras (notion of nuclearity) in order to provide new tools for problems related
to the classification of C*-algebras. In particular we give the definition of so called nuclear dimen-
sion of a C*-algebra. The importance of the aforementioned notion is justified by the following

theorem.



Theorem 2.1. The class of unital separable simple C*-algebras of finite nuclear dimension is
classified by the Elliott invariant ("K-theory and traces”) in the presence of the UCT (Universal
Coefficient Theorem,).

UCT should be treated here as some sort of technical assumption on the level of KK-theory.

Definition 2.2. A von Neumann algebra M is semidiscrete if there exists a finite dimensional
approximation, i.e. there is a net {(¢;, ¢;, F;)}, consisting of completely positive contractive maps

(cpc maps) ¢;,1; and finite dimensional C*-algebras F; such that the following diagram

M — o6

approximately commutes in the sense that ¢;1;(z) — x in weak* topology for any x € M (point-

wise convergence with respect to the weak™ topology topology).

Remark 2.3. First step of Connes’s proof (cf. theorem 1.15) is establishing the fact that injectivity

implies semidiscreteness.

Remark 2.4. When we know that M is hyperfinite, we can arrange for ¢; to be *-homomorphisms.

Definition 2.5. A C*-algebra A is nuclear (has a completely positive approximation) if there is
a net {(v;, ¢;, F;)}, consisting of completely positive contractive maps (cpc maps) ¢;, 1; and finite

dimensional C*-algebras F; such that the following diagram

A e g

approximately commutes in the sense that ||¢;1;(z) — x| — 0 for any « € A (pointwise convergence

with respect to the norm topology).
Proposition 2.6. A C*-algebra A is nuclear if and only if A*¥* is semidiscrete.

sketch of a proof. = Nontrivial, factor through Connes’s result, no direct approach know to this
day.

< If A** is semidiscrete then it has a finite dimensional approximation given by the diagram

A < i AFF



with ¢;1;(x) — 2 in weak™® topology for any z € A € A**. By Kaplansky density theorem we may
replace ¢; by maps ¢} : F; — A (this is possible since there is a bijective correspondence between
completely positive contractive maps form M,, to A** and positive elements in M, (A**)). As a

result we obtain the following diagram

A4 4

with ¢;4;(x) — x in weak-topology for any = € A. By Hahn-Banach theorem point-weak closure
of a convex sets coincides with its point-norm closure. Since convex combinations of factorable

maps are factorable, therefore we get the desired norm convergence. O

Definition 2.7. A completely positive map © : B — (' is called order zero if it preserves

orthogonality i.e. for any x,y € By, zy = 0 implies O(x)O(y) = 0.
Example 2.8. Any *-homomorphism is an order zero map.

General form of an order zero map is given by

N|=

O(x) = h2w(x)h
where h is positive, 7 is *-homomorphism 7 : B — M(C*(©(B))) to multiplier algebra and
[h,7(z)] = 0 for all z € B (cf. theorem 8.1).

Remark 2.9. Any unital order zero map is automatically a *-homomorphism.

Remark 2.10. There is a duality between order zero maps from B to C and cones over *-

homomorphisms Cy(0,1]® B — C.
In that context there is an analogue of the Kaplansky density theorem.
Proposition 2.11. Let F' be a finite dimensional C*-algebra with an order zero map © : F — M

to von Neumann algebra M. By A denote a strongly dense C*-subalgebra in M. There exists a

net {©;}, of order zero maps such that

approximately commutes, i.e. ©;(x) — O(x) in strong*(weak*) topology for any x € F.

By this proposition on can present a modified proof of implication < from proposition 2.6, if
A** is hyperfinite. In that case one can replace *-homomorphisms by order zero maps in order to

obtain approximately commutative diagram



A dda g

Proposition 2.12. Let A be a nuclear C*-algebra. Then for any finite subset F « A and any
e > 0 there is a completely positive contractive (cpc) approximation, i.e. there are completely

positive contractive maps ¢ and ¢ such that

F=FOg.. . @F®

where each F@ is a finite dimensional C*-algebra, |¢rp(x) — x| < € for any x € F and ¢|pq) is

order zero map for alli=0,1,...,n.
Remark 2.13. Decomposition F' = FO @ ... @ F™ depends on F and e.

Definition 2.14. A C*-algebra A has nuclear dimension dimy,c(A4) < n if for any finite subset
F « A and any e > 0 there is a completely positive (cp) approximation, i.e. there are completely

positive maps 1 and ¢ such that

F=FOg. . @Fm

where each F() is a finite dimensional C*-algebra, |¢i(z) — 2| < € for any z € F, ¢|pw is

contractive order zero map for all ¢ = 0,1,...,n and ||¢|| < 1.

Remark 2.15. Decomposition F' = FOg...¢oF™ depends on F and e.

Remark 2.16. If ¢ in the above definition is contractive then A is quasidiagonal.
Example 2.17. dim,,.(C[0,1]) <1

Proof. Fix finite subset F < C[0,1] and € > 0. Find an open cover of [0, 1] such that elements in
F are e-constant. Without the loss of generality we can consider for example the open cover of
the unit interval consisting of the following sets: Hy = [0,b), Ha2 = (¢, f), Hs = (g,1], K1 = (a,d)
and Ko = (e,h) where 0 <a <b<c<d<e< f<g<h<1 (wecan always refine the given
cover in order to obtain the generic cover such as presented here - two colorable refinement, see

the figure below, when H; are represented by color blue and K; are represented by color red).



L K N K4 v N K 1 N
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0 a b d ¢ f 9 h 1

Let us choose a point x; in each H; and y; in each K; such that any of those points do not
belongs to the intersection of any open sets in the described cover. Let h; and k; denote a partition
of identity subordinant to the given cover (such that h; is supported on H; and k; is supported
on K;), ie. 1= hi + >, ki.

Define the following diagram

idegpo,1]

oo, 1] clo,1]

C* @ C2

such that 1 : C[0,1] — C3 @ C? is given by evaluation maps

¥ = ev(z1, 72, 73) ®ev(y1, y2)
and ¢ : C* ® C? — C[0,1] is described by partition of unity
P(A1, Mgy Az, s pi2) = 2 Aihi + Z piki.
For f € F and typical t € [0, 1] we have for example
f(t) = f(O)ha(t) + f(t)k2(2)

and
oV(f)(t) = f(x2)ha(t) + f(y2)ka(t).

Therefore, since f is e-constant, we have |¢1(f) — f|| < € for any f € F. Moreover, ¢|cs and ¢|c2

are order zero contractive maps. ]

Remark 2.18. In fact it is an example of a more general phenomenon (cf. definition 8.5 and

example 8.7).

There is a natural question when dimy,.(A) = 0?7 Obviously it is true for finite dimensional
C*-algebras. What is more, such a property is preserved by direct limits so in particular AF
algebras has zero nuclear dimension. In fact dimp,.(A4) = 0 if and only if A is AF algebra (cf.

section 8).

We will return to the notion of nuclear dimension in section 8. At the end of this part of notes
let us consider the following table which implements nuclear dimension in the general scheme of
defying analogous (corresponding) notions in the C*-algebras setting based on well know notions

form von Neuman algebras theory.



von Neumann notions || direct C*-notions colored C*-notions
hyperfiniteness AF algebras finite nuclear dimension
Rokhlin theorems Rokhlin property Rokhlin dimension
MR =~ M ARUHF ~ A ARZ =~ A

Where R, UHF', Z are hyperfinite II; factor, universal UHF algebra and Jiang-Su algebra respec-
tively.

3 Intertwining arguments

In this section we look closely at so called intertwining techniques and provide examples of how
such methods from von Neumann algebras theory can be translated into C*-algebras setting.
Intertwining techniques become extremely useful in a classification tasks, since in the presence
of ”internal approximation” (hyperfiniteness, being direct limit, etc.) classification of C*-algebra

comes down to proving uniqueness theorems.

Example 3.1. Let F be finite dimensional C*-algebra and M denotes II;-factor. Then linear
maps

p: F—-M
are classified by traces, i.e. 1 and o are unitarily equivalent if and only if 7 0@, = 70 @y where

7 is the unique trace on M. Given any trace tr on F' there exists a map ¢ : ' — M such that

tr =71o00.

We wish to have an approximate version of this example with respect to the norm defined by
|z]y = T(x*z)? (this is an appropriate choice as this norm is metrizable with respect to strong*

topology on the unit ball in M).

Fact 3.2. For any finite dimensional C*-algebra F' and € > 0, there exists § > 0 such that any
two completely positive contractive maps ¢1, g2 : F' — M which are §-homomorphisms in |-, and
[To¢1 —Toda|, <& are e-approzimately unitarily equivalent, i.e. there exists v € U(M) such

that |vgr (z)v* — ga(x)|, < €, when |z| < 1.

Proposition 3.3. Let M denote 11y factor and B € M be its von Neumann subalgebra. Then

there exists the unique trace preserving conditional expectation ® : M — B.
sketch of a proof. Conditional expectation ® can be defined by the following commutative diagram
L2(M) _projetion 1o (B)
ul u

M—2 B



where M nad B are considered as their completions. Existence of ® follows from arguments based

on the double commutant theorem. O

Remark 3.4. Conditional expectation ® is not a homomorphism.

Remark 3.5. In particular the last proposition show that injectivity is transferred to subalgebras

(in fact it is not only true for II; factor, but also for any finite von Neumann algebra).
We now ready to present the proof of proposition 1.19, i.e. we will show the uniqueness of
hyperfinite II; factor R. the following reasoning is an example of intertwining technique.

——S0T
sketch of a proof. Suppose that we have two hyperfinite II; factors M = |J,, F and M =

sor
U, Gn . Let us start with F} being subalgebra of M. There is a *-homomorphism

91:F1—>N

induced by the trace in M. If so then there exists G,,, © N such that 6, (Fy) S5, Gpn, (01(F1) is
almost contained in G, with respect to ||, norm, i.e. every element form the ||-| norm unit ball
of 61 (F1) is approximated by elements from G,,, in |-|, norm). As in a previous case, trace on N

induces *-homomorphism

wlZGnIHM

and there is Fy,, S M such that 1(Gn,) S5, Fn,- Let us observe than when &g, : N —
G, denotes the conditional expectation, composition 11 o @, o 6 define an approximate *.
homomorphism. Consider inclusion iy : F; — M. Since 1 and ¢ 0 @, o0 approximately agree
on traces therefore, by uniqueness theorem, we can adjust ¥; by some unitaries in such a way that

the following diagram

% N
oG,
ul
i1 91 (Fl) Sy Gnl
P1

M
€1-approximately commutes (in fact value of d; is dependent of a desired €1, for a given €1 > 0 we
find n; big enough in order to provide 61 (Fy) S5, Gpn,). By the same reasoning one can define
0 : F,, — N induced by trace in M and continue this procedure (adjusting on maps on each step
in order to obtain approximately commutative diagrams). Carrying on averaging for summable
tolerances we obtain §(x) = lim 6, (z) (in ||, norm) as a map

%UﬂﬁN

n

10



Taking the unique extension of 6 to the whole M be obtain a *-homomorphism. Similarly, we

define v : N — M. Note that §# = ¢~ so M and N are isomorphic. O

Following the same strategy one can also prove the classification theorem for AF algebras (by

ordered Kj). Let us remind the construction of Ky group for a given C*-algebra A. By
Pa =P (U, Mn(A)) /L

we denote the set of equivalence classes of projections in [ J,, M, (A), where ~ denote Murray-von
Neumann equivalence of projections. We can equipped P4 with abelian semigroup structure given

by

K(A) is then define as a Grothendieck group constructed form P,. Consider a stably finite case:
M,,(A) is finite (where the notion of finiteness coincides with definition for von Neumann algebras,

cf. section 1). Ky(A) has a cone with order described by
Ko(A)y = {[p] : pe Pa < Ko(A)} .
After this introduction we are ready to presents the desired classification theorem.

Theorem 3.6 (Elliott). Two AF algebras A nad B are isomorphic if and only if they agree on

the level of invariant
(Ko(A), Ko(A)+, [14]) = (Ko(B), Ko(B)+, [15]),
i.e. there exists an isomorphism © : Ko(A) — Ko(B) such that
O(Ko(A)+) = Ko(B)+

and

O([1al) = [15]-

sketch of a proof. Suppose we have an isomorphism © : (Ko(A), Ko(A)+, [La]) — (Ko(B), Ko(B)+, [15]).

Since Ky is continuous, i.e. for A = | J,, A, we have that Kj is a direct limit
(Ko(A), Ko(A)+, [14]) = lim (Ko(An), Ko(An)+, [La,]),

we obtain the following diagram by restricting © to K-theory invariants of a given finite dimen-

sional subalgebra of A or B

11



(KO(Al)v KO(A1)+7 [11141]) 49) (KO(BH1)5 KO(B7L1)+7 [ﬂBnl])

The proof is then completed by existence and uniqueness theorem for finite dimensional alge-

bras. 0

Remark 3.7. If there is an isomorphism ¢ : A — B, then it induces the desired group isomorphism
© on the level of K-theory. Conversely, if there is an isomorphism © then it can be lifted to

isomorphism ¢ : A — B such that its induced map on the level of K-theory agrees with O.

4 Connes’s proof: injectivity implies hyperfiniteness

We will now return to the theorem 1.15. There are three main ingredients of Connes’s proof that

injectivity implies hyperfinitenss. Let M denote separable acting II; factor.

Ingredient 1 Uniqueness for commuting *-homomorphisms, i.e. M has approximately inner flip:

There is a net u, of unitary elements such that u,(z®y)u} — y®uz in |||, norm for any x,y € M.

Ingredient 2 M is McDuff (has McDuff property), i.e. M =~ M®R. In fact if M is McDuff then
there exists © : M ~ M®R which is approximately unitarily equivalent to idy; ® 1 g, i.e. there

exists a net v, of unitaries such that v,0(z)v} - z®x in ||, norm.

Ingredient 3 M has external finite dimensional approximation, i.e. M — R%  where R“ denote

ultraproduct of R defined by
R = CR) [{(a,) € £2(R) - i, = 0)
where w € B(N)/N is notrivial ultrafilter.

Remark 4.1. Injectivity of M implies ingredients 1 — 3.

We can now present the sketch of the proof that injectivity implies hyperfiniteness, assuming

(for simplicity) that M — R (instead of M < R%).

sketch of a proof. Take finite subset 7 « M and € > 0. Let F' € M be a finite subalgebra such
that F <, F' (with respect to ||, norm). Because M is McDuff, we can work with M®R instead

12



of M. If so then F is of the form {z; ® 1,...,z, ® 1}. Consider the following maps
M Y% MIR 2 MR

with ¢ being flip and ¢ denoted either x — 2 ® 1 or x — 1 ® x. Because of approximate
unitary equivalence, there exist unitary v € M®R such that [v(1 ® ¢(z;))v* — 21 @1, < e.
There is a finite set {¢(z1),...,d(x,)} and a finite dimensional subalgebra F < R such that
{¢(x1),...,0(xy)} S F. Finally, we obtain finite dimensional subalgebra v(1QF)v* < M®R
with z; ® 1 €, ’u(]l@ﬁ')v* for some k € N. O

It is worth noting that there is a direct C*-algebraic analogue of that reasoning.
Theorem 4.2 (Effros-Rosenberg, 1978). If A is separable unital C*-algebra such that
1. A has approzimately inner flip (in this case with respect to ||-| norm),
2. A2 A®Q (Q is a universal UHF algebra),
3. A— Q. (Qu denotes C*-ultraproduct).
Then A is AF algebra (and hence A = @Q by classification).

Remark 4.3. Not all separable, unital C*-algebras fulfill conditions 1 — 3 stated in theorem 4.2
(for example CAR algebra).

Theorem 4.4. If C*-algebra A has approximately inner flip then A is simple, nuclear and has

unique trace of rank 1 (if it exists).

sketch of a proof. Suppose that J <1 A is a proper ideal (closed, two-sided). Then J® A and A® J
are different ideals in A ® A. Since A has approximately inner flip there are unitaries wu, such
that u,(J ® A)uf — J® A and hence J ® A = A® J, because unitaries preserve ideals. We get
a contradiction thus A is simple.

To see that A is nuclear consider the flip A ®max (A ® B) flip A® A® B. We have unitaries
ty, such that up, (1 ®max (A® B))u¥ - A® 1 ® B which shows that maximal norm and minimal
norm coincides.

The remaining part connected to trace is left as an exercise. O

Remark 4.5. Having approximately inner flip implies that flip is trivial on the level of K-theory,
e.g. AF algebra = UHF algebra. Therefore, condition 1 in theorem 4.2 excludes broad range of
C*-algebras.

Theorem 4.6 (Matui, Sato). Suppose A is simple, separable, nuclear unital C*-algebra with the
unique trace and such that A =~ A® Q. Then A has a ”2-colored approzimately inner flip”’, i.e

there exists net {(un,vn)}, of pairs of unitaries contractions such that

(@Yo + un(rQYu) —> Yy

13



and wruy,, v¥iv, approximately commutes, i.e. [ufu,, A® Al — 0 and [viv,, A® A] — 0.

Corollary 4.7 (Matui, Sato). Let A be simple, separable, unital C*-algebra with the unique trace.
Suppose that A~ A®Q and A — Q. Then dimp,.(4) < 1.

5 Quasidiagonality

In this section we will briefly discuss quasidiagonality which has already appeared in our previous
considerations. We shall begin with the following definition.

Definition 5.1. We say that nuclear, separable, unital C*-algebra is quasidiagonal if A — Q..

This is the case if and only if there exists a sequence of maps ¢, : A — My, (C) such that

and |¢n(z)| — ||z|| for any x,y € A.

Example 5.2. The following C*-algebras are quasidiagonal:
e Abelian C*-algebras,
e AF algebras,
o C(X,M,).

Obstruction: A — @, where

Qu =@ [{(w,) € 42(4) : timy o [ra] = 0} w € B/

implies that A is stably finite.

Open problem (Blackadar, Kirschberg): Do all stably finite nuclear C*-algebras A fulfill
A= Q7

Theorem 5.3 (Winter, Zacharias). If A is separable, nuclear an unital C*-algebra with faithful
trace, then there exist contractive order zero maps ¢1,da : A — Q. such that ¢1(1) + ¢2(1) = 1.

Corollary 5.4 (Sato, White, Winter). Let A be a simple, separable, nuclear, unital C*-algebra
with unique trace such that A~ A® Q (or A~ A® Z). Then dimy,.(4) < 3.

Theorem 5.5 (Tikuisis, White, Winter). A separable, unital, nuclear C*-algebra A with faithful
trace and UCT admits embedding A — Q..

Remark 5.6. The only role of the presence of UCT in the previous theorem is to provide that the

map

KK <CO(O’ 1)®A, ﬁ Qw) - ﬁ KK (00(071)®A7Qw)

n=1 n=1

is injective.

14



6 Tracial approximation

Let us start with the natural question. Whenever there are two linear maps ¢, : A — B
between unital C*-algebras, when are they unitarily equivalent or at least approximately unitarily

equivalent? The answer for that question is provided by Connes 2 x 2 matrix trick. Define a map

We have the following facts

Fact 6.1. ¢ is unitarily equivalent to v if and only if matrices

are equivalent (in Murray-von Neumann sense) in Ma(B) n w(A)

Fact 6.2. ¢ is approximately unitarily equivalent to v if and only if matrices

are equivalent (in Murray-von Neumann sense) in the relative commutant of w(A) in the ultra-

product of Ms(B).

It is immediate that any two maps form R (hyperfinite IT; factor) into other II; factor are
approximately unitarily equivalent (because unitary equivalence occur on finite dimensional alge-
bras). One could say even more. If 7 : R — M¥ then m(R)' n M¥ is a factor of type II (trace on

M*® is inherited from trace on M).

Example 6.3. Consider the AF algebra A with Ko(A) = Q?, Ko(A4)y = {(g,p) € Q4 x Q} and

[1] = (0,1). Traces of AF algebras comes from states in K-theory, i.e. from maps
(Ko(A1), Ko(A1)4, [14,]) — (R, R, 1).
In a given example there is only one state p mapping
(s,t) — s.

This state has the property that [z] < [y] implies p(z) < p(y) (but the inverse implication does

not occur).

Definition 6.4. C*-algebra A has strict comparison of projections by traces if 7(p) < 7(q) for all

7€ T(A) (p,q € P(U, Mn(A))) implies [p] < [q].

Proposition 6.5. Let A and B be separable C*-algebras with the unique trace. Let w: A — B be
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a *-homomorphism. By T we denote extension of

T:M—>N
—SOT —=SOT . . .
where M = A and N = B . Then we have a surjective map (form Kaplansky density
theorem) between ultraproducts
B, —» N¥

which induces a surjective map

m(A) n B, » T(M)" n N“.

This proposition gives us a tool of ”pulling back” elements form von Neumann setting (7(M)' n

N¥) into the C*-algebraic one (w(A) N B,,).
In the remaining part of this section we shall assume that each C*-algebra is separable, simple,

nuclear and with the unique trace.
Lemma 6.6 (Matui, Sato). Suppose that B has strict comparison of elements by its trace. Then

1. all traces on w(A)' N By, factor through canonical surjection onto T(M) nN¥, i.e. w(A)' N B,

has unique trace.
2. m(A) n By, also has strict comparison.

We have already defined strict comparison in the context of projections, the following definition

provides its generalization.

Definition 6.7. A has strict comparison if for any positive elements a,b in matrix algebra
U, M, (A), lim, r(aw) < lim, 7(b%) implies that there exists a sequence of unitaries v, such

that v,bv¥ — a.

Assume A is unital. What is more let A — @Q,, (holds in the presence of UCT) and A ~ A®Q.
Fix unital completely positive maps ¢, : A — My, < My, ® Q = @ inducing ¢ : AQ Q — Q.
Fix projections p, = 1 ® P, € My, ® Q such that 1 — e < 7(p,) < 1 — § and define projection
P=(pn) €Qunp(ARQ) (wehave 1 —e < 7(p) <1—-5). Set 7: AQQ — M2(A®Q)., by

T 0

0 14®p(x).

m(x) =

By lemma 6.6, 7(A® Q) N M3(A® Q),, has strict comparison

0 0 10 )
T <T =WerT(A®Q) N M2(AR Q) s.t.
0 p 0 0
0 0 1 0
v¥u = ,vv*g
0 p 0 0
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Let F,, = My, ® Py, lift v to (vy,) (in the ultraproduct) satisfying

0 0 n 0 1 0
Up = , VUT = <

'U:; x
0 pn 0 0 0 0

Note that [g,, A ® Q] — 0.
Conclusion: A® @ is tracially AF in this setting, i.e. for any finite subset F « A, € > 0 there
exists finite dimensional subalgebra F' ¢ A®Q such that |[[1p,z]| < eforany z € F, 7(1p) > 1—¢
and lpzlp €, F for all x € F.

This tracial local structure is good for classification in the presence of UCT. Unfortunately
tensoring with @) ”damage” K-theory information. The proof of presented construction give us

opportunity to change @ with any UHF algebra.

7 Z-stability

In this section we will return to the main idea presented by the table in the end of section 2. Let

us recall that in a von Neumann setting we have

McDuff property MR =~ M < Vi My — M*“ ~ M’(unitarily).
Similarly in C*-algebraic setting
McDuff property A® Q =~ A < Vi My, — A, n A'(unitarily).
Let Z denotes (as previous) the Jiang-Su C*-algebra. We have the following dimensional (”col-

ored”) version of above results.

Proposition 7.1. A~ A® Z if and only if for any k there exist contractive order zero maps
(,251 :MkﬂAwﬁA/,

G2 My — Ay n A
such that ¢1(1) + ¢2(1) = 1.

Remark 7.2. In fact this property could be seen as a definition of Jiang-Su C*-algebra.

Remark 7.3. Most of proofs from the previous sections have their colored versions (with AQZ ~ A

instead of AR Q ~ A).

The above proposition can be stated in a different way.

Proposition 7.4. A =~ A® Z if and only if for any k there exists an order zero map ¢ : My —
Ay n A such that 1 — ¢(1) = v*v and ¢(e11)vv™ = vv* for someve A, N A'.

Theorem 7.5 (Matui, Sato). If A is a unital, simple, separable, nuclear C*-algebra with the
unique trace then A~ A® Z.
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sketch of a proof. We have the following diagram from canonical surjection
Ay nA —» R R’

¢

My,

where ¢ denotes order zero lift and inclusion of M}, in R“ n R’ is by McDuff property. Observe
that 7(1 — ¢(1)) = 0 and 7(¢(e11)) = 1, so there exists desired v from the previous definition.
O

Remark 7.6. Let us emphasis that Z was a first counterexample to the conjecture that simple
nuclear and separable C*-algebras are completely classified by K-theory. Indeed, Z is stably finite
and infinite dimensional C*-algebra with K-theory K4 (Z) = K, (C).

Finally, let us present more direct approach to the definition of Jiang-Su algebra. Let
Zpoo7qoo = {f € C’([O7 1],Mpoo ®Mqoo) : f(O) = Mpac ®11, f(l) =1 ®qu} .

Remark 7.7. One can think of this as a C*-algebraic analogue of join construction.
Consider a map
QLo go —> Lpo g0
which is trace collapsing, i.e. 71 0o a = T o « for all traces 71,7 € Z,» go. Then we can define Z
(knowing of its existence form elsewhere) by

Z

a 3 [e] [e%
0 C > e .
p0,q0 —————> Lpo g0 ———— Lpw g0 Z

”Winter technique”: If one can classify AQU for all U € UHF algebras in a fashion compatible
with the definition of Z, then one can classify A® Z.

8 Nuclear dimension: examples, properties, techniques

In this section we discuss in more detailed way the notion of nuclear dimension which was briefly
presented in section 2. Recall than a completely positive map ¢ : A — B between two C*-algebras

is order zero (o0z) if ajaz = 0 (a1 Laz) implies ¢(a1)p(az) = 0 (p(a1)Lp(az)) for all ay,a2 € AL

Theorem 8.1. A map ¢ : A — B is order zero if and only if we have the factorization given by

|

M(By)

the following commutative diagram

A S@
—_—
s



where m is a *-homomorphism form A to multiplier algebra M(B,), h is some positive element of
B such that [h,m(A)] = 0 and B, = ¢(A)Bp(A). We have ¢(a) = hr(a) = n(a)h = him(a)hz.
Remark 8.2. If A is unital then h = p(1). In general case one should deal with approximate unit.

Before we go further let us evoke two important stability results.

Lemma 8.3. Let A be a C*-algebra with closed two-sided ideal I 1A and F be a finite dimensional
C*-algebra. If there exists an order zero map ¢ : F — A/I, then there exists an order zero lift

p:F— A

Let ¢ : FF — A be a completely positive map form finite dimensional C*-algebra F' to some

C*-algebra A. We define a modulus of order zero map by

() = sup{[e(@)e(y)] : z,y € Fy, =], ly| <1, Ly}
It is obvious that §(p) = 0 if and only if ¢ is order zero.

Lemma 8.4. (Perturbation result) For any € > 0 there exists 6 > 0 such that for all o : F — A

completely positive contractions with 0(p) < 0 we can find an order zero map ¢ : F' — A such that

le — @l <e.

Recall (definition 2.14) that C*-algebra has nuclear dimension dimy,.(A4) < n if and only if for

any finite subset 7 « A and any € > 0 there is a completely positive approximation

A—2Y L F-FOg@. . @Fm % 4
such that [|¢]| < 1, ¢|pe is order zero contraction for all i = 0,1,...,n and ||¢p(z) — x| < € for

any = € F. The above diagram give us so called n-decomposable approximation.

Basic properties:
1) dimy,c(A) = 0 if and only if A is AF C*-algebra.
2) dimpye(lim; o A;) < liminf; o dimp,e(A;).

3) dimpyye(Mp(4)) = dimpye(A) = dimpye (A ® K) (Morita invariance).

sketch of a proof. Just tensor decomposable approximation diagram with M,, and then use prop-

erty 2 stated above to prove the last equality. O

4) Consider the following exact sequence
0—I—A— A/I —0.

Then dimpye (1), dimyyc(A/T) < dimpye(A4) < dimpye() + dimye (A/T) + 1.
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sketch of a proof. To show dimyyuc(I) < dimp,e(A) consider the following diagram

I A da A ¢ I

F=FOg.. . oF®

11
with ¢ : a — ejae} given by quasicentral approximate unit (ey) € I (we say that approximate
unit of an ideal T <1 A is quasicentral if [ey,a] — 0 for all a € A). Observe that ¢@|pw : F) — T
is approximately order zero so using lemma 8.4 one can perturbate it into order zero map.

Inequality dimp,c(A/I) < dimy,.(A) comes from the following diagram

AT — 4 A da A a AT

F=rFOg.. . oF®

where ¢ denotes quotient map and ce stands for Choi-Effros cp map.
Finally, in order to show dimy,c(A4) < dimpyc(I) + dimpyc(A/I) + 1 consider the diagram which

consists of decomposable approximation diagrams for I and A/

0 I A A/T 0

FO@®. .. .9Fm™ ® GOo..0GM™

0 I A A/l 0

Using once more quasicentral approximated unit trick and taking the direct sum of FO@. .. @F ™

and GO @ ...® G we get the thesis. O

5) Let H < A be a hereditary subalgebra of a C*-algebra A (i.e. forany x € H and ye Ay <=z
implies y € H - if A is separable then hereditary subalgebra is of the form H = aAa for some
positive element a). Then dimy,.(H) < dimyyc(A).

6) dimyue(A® B) < (dimyye(A) + 1)(dimpye(B) + 1) — 1. Putting dim}, . (A) = dimp,c(A4) + 1 we

can write it in a simpler way dim,.(A ® B) < (dim,},.(A))(dim;,.(B)).

nuc nuc

sketch of a proof. Just take tensor product of decomposable approximation diagrams. O

7) Technical point: If dim,u.(A4) < nand F « A is a finite subset then there exists n-decomposable
approximation such that v is approximately order zero map on F. If |¢| = 1 we can arrange for

1 to be approximately multiplicative (in that situation A is quasidiagonal).
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We are now ready to provide some concrete examples of nuclear dimensions.

Definition 8.5. Let X be a compact Hausdorff space. X has decomposition dimension dim(X) <
n if for any (finite) open cover W there exists an open refinement U > W (i.e. for any U’ € U
there exists W* e W such that U* ¢ W* and U is a cover) such that U = U v UM u...0o U™,

where each U® is a union of pairwise disjoint open sets.

Remark 8.6. Decomposition dimension is the same as usual cover dimension (in most reasonable

cases).
Example 8.7. If X is compact (metrizable) Hausdorff space then dimy,.(C(X)) = dim(X).

sketch of a proof. To show that dimy,.(C'(X)) < dim(X) one should generalized discussion given
in example 2.17, i.e. partition of unit subordinated to U = U© o UM & ... v U™ defines
n-decomposable approximation. In order to prove the second inequality one should start with n-
decomposable approximation for C'(X) and observe that existence of order zero maps from matrix
algebra to commutative C*-algebras implies that considered matrix algebras are one dimensional.

O

Example 8.8 (Roe algebra). Let (X, d) be a discrete metric space of bounded geometry, i.e. for
any r > 0 number of elements |B,(z)| in ball of radius r and center at z is uniformly bounded

(d = sup{|B,(x)|: x € X} < o). In this case we define finite propagation operators by
UC(X) ={[ow,yleyex : IM > 0,R > 0 s.t. |oy,y| < M and g, =0 if d(x,y) > R}.

For example if X = Z then we consider infinite matrices with entries different than zero only in the
R-width bar across the diagonal. The Roe algebra is defined by UC*(X) = UC(X) < B(£*(X)).

Because X is discrete, its topological dimension is equal to zero. However, one can define new
dimensional notion suitable for a coarse space. Space X has asymptotic dimension asdim(X) < n
if and only if for any uniform cover W (diameter d(w) of w € W is uniformly bounded) there

exists a coarsening U (W > U) such that U = U©Q w UM U ... o U™, where each U is a union

of pairwise disjoint sets (even r-disjoint for some r > 0).
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From the above figure it is clear that asdim(Z) = 1. By similar reasoning one can obtain also
asdim(Z4) = d.
In the case of Roe algebra UC?(X) we have the following inequality.

Theorem 8.9. Nuclear dimension of Roe algebra satisfies dimp,(UCH (X)) < asdim(X).
Remark 8.10. It is interesting results since Roe algebra is often quite big (i.e. nonseparable).

sketch of a proof. We give argumentation in the case when X = Z. Since ¢*(M,,) is AF algebra

we have the following diagram

UCH(X) UCH(X)

(*(My) @ (M)

[

F(0) FD)

where @ : UCH(X) — {*(M,) @ £*(M,,) denotes cut down map which sends any element form
UC*(X) to sequence of its submatrices (related to given family U(®) and UM) placed in the first
and second components of £*(M,,) @ ¢*(M,,) respectively. Form this diagram we can construct
desired approximation, the only problem is the fact that submatrices related to different families
U© and UM may overlap. To get rid of this, each block matrix in any considered element form
£*(M,,) must be rescaled (multiplied form left and right on the level of definition of the cut down
map ®) by the matrix of the form

SIS

2 0
n
D= 1
2
0 o
Since D almost commutes with finite propagation operators the proof is completed. O

Definition 8.11. C*-algebra A is purely infinite and simple if for all a,b € A\ {0} there exists
x € A such that a = z*bx (if A is unital then 1 = z*bx).

Example 8.12. By arguments similar to the given in a previous example one can show that for
Cuntz algebras we have dimy,.(O,,) = 1 and dim,,.(Oy) < 2. It quite unexpected result as Cuntz

algebras are purely infinite. In fact all infinite graph C*-algebra have finite nuclear dimension.

Theorem 8.13 (Winter, Zacharias). If A is purely infinite, simple, separable and nuclear C*-
algebra (Kirchberg algebra) satisfying UCT (Universal Coefficients Theorem), then dimy,.(A) < 5.
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In fact above resultrs has been improved.
Remark 8.14. dimy,c(A) = 1 for all Kirchberg algebras with the presence of UCT (Sims).

Remark 8.15. dimyu.(A) < 3 for all Kirchberg algebras without the presence of UCT (Matui,
Sato).

Remark 8.16. dimuuc.(4) = 1 for all Kirchberg algebras without the presence of UCT (Bosa,
Brown, Sato, Tikuisis, White, Winter).

9 Cuntz semigroups and nuclear dimension

Let us consider C*-algebra A and define the direct limit My (A) = (,, My (A) where the embedding
of M,,(A) in M,,+1(A) is given by

For a,b € My (A)+ we define relation a < b (we say that a is Cuntz below b) if there exists
a sequence (z,) € My (A) such that zXbx, — a in norm. We say that a and b are Cuntz
equivalent @ ~ b if and only if @ < b and b < a. Cuntz semigroup W(A) is then define by
W(A) = My(A)+/ ~. Cuntz semigroup is ordered semigroup with addition given by

The importance of Cuntz semigroup W (A) lies in the fact that it contains information of K-
theory and traces of the starting algebra A. For example K(A) - the Grothendieck group obtain
form W (A) corresponds to traces on A (in a unital case) with the exception of the case when A is
purely infinite (in that situation all positive elements are Cuntz equivalent and W(A) = {0, 00}).
In general it is extremely hard to determine W (A) (no good homological methods suitable for this
problem).

One can think of [a] € W(A) in correspondence with open support projections (by open
support we mean interior of support). For a € My (A); we have a ~ a™ ~ aw. In the case of
positive function a € Cy(R), aw converges (pointwise) to some open support projection Xsupp(a)-
In general case one can also make the above statement meaningful (this statement can be make
precise on the level of enveloping von Neuman algebra of A ® K).

Let us observe that from trace on A we get trace on My (A) (W(A))

d;(a) =7([a]) = lim T (a%) .

n—o0

Let us remind the definition 6.7 formulated in the present context.

Definition 9.1. C*-algebra A has strict comparison if for all a,b € My (A)+\ {0} the following is
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true: if 7(a) < 7(b) for all traces 7 € T(A) then a < b.

Example 9.2. The following examples give a glimpse of the previous definition.

1. Strict comparison is fulfilled in von Neumann algebras setting.

2. Let A = M,, with the unique trace 7 = %Tr and p, denotes the projection onto the range of
a€ Ay. For any a,be Ay, 7(a) < 7(b) implies rk a < rk b and from that there exists z € A

such that a = x*bx, so we have strict comparison.

3. If simple and infinite (without trace) C*-algebra A has strict comparison then A is purely

infinite (a,b € My (A)y = a <b,b < a,a ~b).

4. There exists an infinite, simple and nuclear C*-algebra without strict comparison (Rgrdam,

2001).

5. There exists a finite, simple and nuclear C*-algebra without strict comparison (Toms, 2008).

To sum up, we have two notion of comparison (for positive elements):
e a<.b<e T(ps) <7(pp) forall 7€ T(A),
e a<be I(z,) € A:zlbx, — a.
We have strict comparison if [a] <, [b] implies [a] < [b] (a <, b implies a < b).

Theorem 9.3. (Winter, Rordam) A simple and separable C*-algebra A with dimy,.(A) < o has

strict comparison.

The proof of the previous theorem is very complicated (dimp,c(A) < oo implies Z-stability
which leads to strict comparison), but one can relatively easy prove the weaker version of this

results given in the next proposition.

Proposition 9.4. Suppose dimu,.(A) = n < . Then A has n-comparison, i.e. for any
a,bo,b1,... by € My(A)y, condition [a] <, [bo], [a] <+ [b1],--., [a] < [bn] implies [a] <
[bo] + [b1] + ... + [bn]. In particular [a] <, [b] implies [a] < (n + 1)[b].

Firstly, note that if ¢ : A — B is order zero map then a; < ag implies ¢(a1) < ¢(ag). If
7€ T(B) then 7o p e T(A).

sketch of a proof. There is a sequence (x,) such that znasx® — ay. If so, then ¢(z,a22)) —

¢(a1). By theorem 8.1 we have
*
o(xtasry,) = hr(ztasx,) = hr(x)w(az)n(z,) = (ﬂ'(l’n)h%) hli%ﬂ'(ag) <7T(l‘n)h%)

and we are done because h'™ % m(az) — @(az). Similarly 7o ¢ € T(A) (by factorization of order

zero map, cf. theorem 8.1). O
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We are now ready to present the proof of proposition 9.4

sketch of a proof. Let a <, bg,b1,...,b, € Ay (My(A);). Find n-decomposable approximation

F\

F

given by the following diagram

\

We can chose ¥; for ¢ = 0,1,...,n to be sufficiently (approximately) order zero maps (p; are
order zero maps from definition on n-decomposable approximation). We can then show that
Vi(a) <, i(b;) for j =0,1,...,n in F®. Since we have a strict comparison in the case of finite
dimensional C*-algebras it gives us ¢;(a) < 1;(b;). This implies @;¢;(a) < @;9;(bj) < b;. Finally,
we obtain a ~ Y}, p;1i(a) < @phi(a) < @it (b;) < @b; which ends the proof. O

Toms Winter Conjecture (2008): Let A be a separable, simple and nuclear C*-algebra. The

following conditions are equivalent
1. dimp,e(A4) < o0.
2. Ais Z-stable (AR Z =~ A).
3. A has strict comparison.

Condition 1 could be seen as a kind of topological condition, while condition 2 is related to the
analysis of the property described by Kirchberg (A nuclear, simple and A® Oy =~ A < A if and
only if A is Kirchberg algebra - is purely infinite and classified by KK-theory). It is known that
1 = 2 = 3 in full generality. However, it is not known if 3 = 1 (but it is true under restriction

on the trace space).

10 Dynamical systems and Rokhlin dimension

In this section we consider dynamical systems and C*-algebras which can be associated with then
in a natural way. We also introduce the notion of Rokhlin dimension and relate it to the nuclear

dimension of discussed C*-algebras.
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Let G be a discrete group and A denotes some C*-algebra. Action o of G on A is a map
a: G — Aut(A) (we write G 4 A). The pair (G, ) is so called C*-dynamical system. Observe
that if A = Cy(X) then G “ A defines an action a of G on X.

Starting from C*-dynamical system we can construct universal crossed product A x, G. One
can think of this as a C*-algebra generated by element a € A and unitaries u, where g € G and

ugau; = ag(a), i.e.

Axy G =C%(a,uq : ugauy = ag(a),a € A, g e G).

Starting form concrete faithful representation A < B(H) we can consider also the reduced cross
product A x,, G < B({*(G)® H) (it appears that A x,,, G does not depend on the choice of
this faithful representation of A). A x,, G is generated by elements A\, € B(¢{*(G) ® H) and
7(a) € B({*(G) ® H) such that

m(a)(eg ® ) = eg @ ag-1(a)é,

M(eg®E&) = eng ®E,

where g € G and a € A. In the case of G finite it is convenient to use matrix units ey ;. In that

case

m(a) = Z €g.9 ® ag-1(a),

geG

m(a)\p = Z egn-1g @ ag-1(a).

geG

Therefore, we have a natural way to consider A x, , G as a subalgebra of M¢(A).
Fact 10.1. If G i amenable then A xo G = A x4, G (in this case we will omit subscript r).

We want to consider a natural question: when dimp,.(A x4 G) < ©? We wish to find an

estimate which involves nuclear dimension of A, dimension of G and action « (in a certain sense).

Definition 10.2 (Oceneau, Herman). Let G be a finite group and G 4 A with A being a unital
C*-algebra. A has a Rokhlin property if the following is true: for any finite subset F « A and

any € > 0 there exists a sequence of projection (p,)gec < A such that
L. deG pg =1,
2. |lag(pn) — pgnl <€,
3. |[pg;a]| <eforall ge G and a € F.
One can generalized this notion to the special case G = Z.

Definition 10.3 (Oceneau, Herman). Let Z s A with A being unital C*-algebra. A has a
(cyclic) Rokhlin property if the following is true: for any finite subset F « A, any ¢ > 0 an any

n € N there exist projections pg, p1,...,pn_1 € A such that
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1.po+p1+...+pp_1 =1,

2. |a1(pi) — pit1| < e (with ¢ mod n),

3. |l[pi,a]ll < eforalli=0,1,...,n—1and a € F.

Let us present the classical motivation which is behind that definitions.

Theorem 10.4 (Rokhlin lemma). Let T : X — X be an aperiodic (such that periodic points have
measure zero) measure transformation of Lebesgue measure space (X, ). Then for any € > 0 and

any n € N there exists measurable subset E € X such that
1. E,TE,T?E,... T" 'E are pairwise disjoint sets,
2. mW((EOUTEUT?EU...0T" 1E)>1—e.

Condition 2 from the previous theorem can be stated as a demanding that characteristic

functions xg, XTE, XT2E, - - -, XT»—1FE Zive approximate partition of unit.

Proposition 10.5. Let G be finite group and G~ A has Rokhlin property. Then dimy,e(A x4
G) < dimyu(A).

sketch of a proof. Let dimpuc(A) = d and let us fixed F, € and projections (pg)gec € A. F x G is

a finite subset in A x, G. We have the following diagram

Ax, G Ax, G
n pT
Mg|(4) Mg(A)

\w %
FO@®...9F®
where p is given by
p(eg,h ® a) = pgugau:ph

with ey, denoting basis in M|g|(A). Observe that p(auy) ~ aug, for any a € F (exercise) and p is
approximately homomorphism (considered as a map to Mg (F)), so pp; are approximately order

zero maps and can be perturbed into order zero maps. O

Proposition 10.6. Let Z = A has Rokhlin property. Then dim;! (A x, Z) < 2 dim}

nuc nuc

(A).

sketch of a proof. Let us fix F,e,n and set of projections pg,...,pn—1. Recall that A x, Z <
B(¢*(Z) ® H). Define projections P, and P/, as projections on subspaces H,, and H/, given by

<€0, N ,en_1>®H
and respectively

(ool @ -
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where e; denote basis vectors in ¢2(Z). We have the following diagram

Ax,7Z AxyZ
P1
x /
FO g, F@ FO g, F@

where pg, p1 : M,(A) > A x,, Z are given by
polei; ®a) = piuiau_jpja

pi(ei; ®a) = piuiaufjpj
and ¥ is cut down map defined by projections P,, P/, rescaled by matrix D defined in the proof
of theorem 8.9, i.e. ¥ = D(P, x P,,)D@® D(P), x P!)D.
Since po, p1 are approximately multiplicative after small perturbation all ppp; and pi¢; are

desired order zero maps. O

Definition 10.7. (Rokhlin dimension) Let be finite group and G “ A (with A being unital).
Then dimgk (o) < d if and only if for any finite subset 7 < A and any € > 0 there exists a family

of elements fsgl) €A, ,geG,1=0,...,dsuch that
L8, 8 -1 <6
2. ||lag( ;(Ll)) - fg(l)hH < € for any given [,

3. ||[a, g(l)]H < ¢ for any given [ and a € F,

4. él)f,(f) H < € for any given [ and g # h.
Remark 10.8. If dimgek(c) = 0, then we have Rokhlin property ( g(o) can be slightly perturbed

in order to give desired set of projections).

Definition 10.9. (Rokhlin dimension) Let Z “~ A (with A being unital). Then dimg (@) < d
if and only if for any finite subset F € A, € > 0 and any n € N there exists a family of elements
fi(l) €eA,,i=0,...n—1,1=0,...,d such that

L2, fi(l) — ]IH <€,

2. al(f,(l)) - fi(fr)lH < € for any given [ (i mod n),

7

3. |[a, fi(l)]H < e for any given [ and a € F,

4. fi(l)f;l) H < € for any given [ and ¢ # j.

Proposition 10.10. Let G be finite group and G ~~ A with dimgex(a) < d. Then dim],

nuc(A Xa
G) < dim;},.(A)(d + 1).
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sketch of a proof. Similarly to the proof of theorem 10.5 we have the following diagram

Ax, G Ax, G
Ial va-",PdT
Mig|(A) D6 M) (4)
Y ®

FO@. . . oF®

with p; : Mg (A) — A x4 G given by

pilegn ®a) = (f) 2 ugauf (fiP)%. (10.1)

O

Proposition 10.11. Let Z ~ A with dimgok(t) < d. Then dim}}, (A% Z) < 2 dim;}, (A)(d+1).
sketch of a proof. Similar to the proof of proposition 10.6. O

Question: How prevalent is Rokhlin dimension?

Theorem 10.12 (Szabo for Z" action, Winter, Krichberg, Zacharias). If X is compact metric
space with free action 7~ C(X) then dimpek () < 2dim(X)+1 (where dim(X) denotes topological

dimension).

sketch of a proof. Proof is based on the following lemma (Gutman, 2012) - topological version of
Rokhlin lemma: Suppose X is compact metric space with free action Z ~ C(X). Let dim(X) =

d < oo and n € N, then there exists U € X open set such that

1. U,a(U),...a" 1 (U) are pairwise disjoint sets,

2. X =9Vl ().

11 Rokhlin dimension for residually finite groups

We have already seen the importance of the concept of Rokhlin dimension. In this section we

extend this notion beyond the case of Z and finite groups. Let us start with the following definition.

Definition 11.1. Let G be a discrete group. We say that G is residually finite if for any = € G\ {e}
there exist finite group F' and homomorphism ¢ : G — F such that ¢(x) # e (in other words
G — []G/N is injective, where G/N denotes finite quotient).

Example 11.2. The following groups are residually finite:

o 7, 74,
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1 a b

e Heisenberg group <« M =0 1 ¢ |:a,b,ceZ;,
0 0 1

e SL,(Z),

e free groups,

e all group of polynomial growth.

Let G be a countable and residually finite group. Then we can find a sequence (G,) of
normal finite subgroups such that G — [[G/G,, is injective ((Gy,) is known as residually finite

approximation of G).

Definition 11.3. Let G and (G,,) be as before with G “ A and A being unital. Then Rok(a) < d
if and only if for any € > 0, any finite subset F « A and any n € N there exists a sequence

(fﬁ(l)) c Ay, l=0,1,...,d,ge G/Gy such that
!

1. Zg,l fgﬁ) — ]1” <€,

2. Oég(f%l)) - f%H < € for any given [,

3. ||[a, fgg)]H < ¢ for any given [ and a € F,

4. fg(l)fhﬁ) H < ¢ for any given [ and g # h.

Remark 11.4. When G = Z and G,, = nZ we get definition 10.9.

One can reformulate the previous definition in a more elegant way. Let A be unital and
separable. Recall that
Ay = 7 (A)/co(A)

and

A— Ay

We can consider the central sequence algebra F(A) = Ay n A’. If G 5 A then we can obtain

G “% Ay, and G %% F(A). Given G and (G,,) as before, one can obtain G & C(G/G,,) given by
O'n(h) ‘€ — 6@.

Proposition 11.5. Let G and (G,,) be as before. G s A satisfies Rok(a) < d if and only if for

any n € N there exist G-equivariant order zero maps @q, - - - Pq
p1: (C(G/Gn),0n) = (F(A), ax)
such that wo(1) + ... + @q(1) = 1.

sketch of a proof. Define gi(eg) = [(£3 (en, Fu))] € £2(A)/co(A) with €, — 0 and F, — A. O
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Remark 11.6. This formalism can be generalized to the setting of topological groups, e.g. G =R
and G, is replaced by Zz, x > 0. Then G/G,, = R/Zx = T. One can develop theory of Rokhlin

dimension for compact groups (Gardella).

Definition 11.7 (Roe). Let G be a residually finite group with residually finite approximation
(G). Assume that G is finitely generated with word length metric . The box space

OG = D(Gn) G = ]_[ G/Gn

is defined as a discrete metric space where G/G,, carries the word length metric [ in the quotient

and G/G,,, G/G,, are ”far apart” for n # m.

Theorem 11.8 (Roe). G is amenable if and only if (1 G has property A. G is exact if and only
if G as a space has property A. Moreover, asdim(X) < oo implies that X has property A (inverse

implication is not true in full generality).

Remark 11.9. Here property A is some sort of 2-variable amenability of coarse metric space.

Question: When do we have asdim((J G) < «? In other words, does asdim((J G) < oo imply
that G is amenable?

Partial answer: asdim([] G) < oo if G is finitely generated, nilpotent/polynomial growth (Szabo,
Wu, Zacharias).

Theorem 11.10 (Szabo, Wu, Zacharias). Let G be residually finite and A be a unital C*-algebra.

1. If G A A then dim], (A x4 G) < (dim,.(A4))(dims,, (o)) (asdim™ (O G)).

nuc

2. If X is compact metric space and G “~ C(X) is free and G is nilpotent with finite Hirsch
length | = lgirsen(G) < o0, then dimg,, (o) < 3Y(dim™ (X)) so dim], (C(X) xq G) <
3H(dim™ (X))?(asdim™ (O G)).
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